М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Rоmаn844
Rоmаn844
03.06.2020 20:26 •  Алгебра

Выразите в радианах углы правильного n-угольника: 1)n=3,2)n=4

👇
Ответ:
nikasuper09
nikasuper09
03.06.2020
Сумма n членов посл-ти в числителе: 
Sn=[(n+1)^2]*[n/2]-2n-4n+4-6n+12-8n+24+...-n^2+const+...-4n+4-2n=           (1)
=(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)            (2)
<<<Пояснение: представили сумму посл-ти числ-ля как n/2 квадратов сумм пар крайних членов т.е. [(n+1)^2+(n-1+2)^2+(n-2+3)^2+...+([n-n/2]+n/2)^2] и прибавили разницу т.е. напр. для номера 3: (3^2+(n-2)^2)-(3+n-2)^2=-6n+12; для номера 2: -4n+4 и т.д.
Таким образом получили (1) 
Далее (2): А(n^2)-величина порядка не более n^2, получаемая при сложении всех свободных членов из (1)>>>
(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)=(n^3)/2+n^2+n/2-2n([n/2+1]/2*(n/2))+A(n^2)=(n^3)/4+A(n^2)+A(n)+const
Отсюда искомый предел: lim[(n^3)/4+A(n^2)+A(n)+const]/[n^3+3n^2+2] при n->& равен 1/4
4,4(4 оценок)
Открыть все ответы
Ответ:
katyabicheva
katyabicheva
03.06.2020

y = x^{2} + 3x + 4

Найдем уравнение касательной, проходящей через точку с абсциссой x_{0} = -2

Для этого найдем производную данной функции:

y' = (x^{2} + 3x + 4)' = 2x + 3

Найдем значение функции в точке с абсциссой x_{0} = -2:

y(-2) = (-2)^{2} + 3 \cdot (-2) + 4 = 4 - 6 + 4 = 2

Найдем значение производной данной функции в точке с абсциссой x_{0} = -2:

y'(-2) = 2 \cdot (-2)+ 3 = -4 + 3 = -1

Уравнение касательной имеет вид:

y = f'(x_{0})(x - x_{0}) + f(x_{0})

Подставим значение f'(x_{0}) = -1, \ f(x_{0}) = 2, \ x_{0} = -2

y = -(x + 2) + 2 = -x - 2 + 2 = -x

Итак, уравнение касательной заданной функции: y = -x

Воспользуемся геометрическим смыслом касательной: коэффициент наклона k касательной y = kx + b численно равен тангенсу угла наклона \text{tg} \ \alpha  с положительным направлением оси Ox

В найденной касательной коэффициент k = -1, следовательно, \text{tg} \ \alpha = -1 при \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

ответ: \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

4,8(85 оценок)
Ответ:
Raha0056
Raha0056
03.06.2020
Решение
1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2.
Найдём r = (√3*√3)/2 = 3/2 = 1,5
По теореме Пифагора находим апофему пирамиды:
l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5
ответ: 2,5
2)  По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала
 момента будет (t -5) мин.
Решим неравенство:
120 * 2^(-(t - 5)/12) ≤ 7,5
2^(-(t - 5)/12) ≤ 7,5/120
2^(-(t - 5)/12) ≤ 0,0625
2^(-(t - 5)/12) ≤ 2⁻⁴
-(t - 5) / 12 ≤ - 4
t - 5 ≤ 4*12
t ≤ 48 + 5
t ≤ 53 (мин)
ответ: t ≤ 53 (мин)
4,8(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ