Это парабола, ветви которой направлены вниз (т.к. а=-4<0). Значит, наибольшее значение функции - это вершина параболы. Находим координаты вершины: х0=-b/2a=-8/2*(-4)=-8/-8=1 у0=-4*1^2+8*1+3=-4+8+3=7 ответ: 7
Задания: 1) у>0 при любом х. х∈(-∞; +∞) у<0 таких х не существуют. 2) при х∈[-2; +∞) функция возрастает при х∈(-∞; 2) функция убывает 3) при х=-2 функция принимает наименьшее значение.
Вероятность равна дроби, в знаменателе которой число всех возможных исходов, а в числителе число благоприятных исходов. Существует выбрать 3 отрезка из данных пяти (так как порядок, в котором мы их выбираем, нам не важен). Значит, существует 10 возможных исходов, а именно: (1,3,4), (1,3,7), (1,4,7), (3,4,7), (1,3,9), (1,4,9), (1,7,9), (3,4,9), (3,7,9), (4,7,9). Здесь (1,3,4) означает, что выбраны отрезки длиной 1, 3 и 4 сантиметра. В треугольнике сумма длин двух меньших сторон строго больше длины третьей стороны, поэтому благоприятными будут только случаи (3,7,9) и (4,7,9). Таких случаев два, тогда вероятность равна 2/10=0.2
х0=-b/2a=-8/2*(-4)=-8/-8=1
у0=-4*1^2+8*1+3=-4+8+3=7
ответ: 7