1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
f`(x) = 0
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
2) знайдемо точки екстремума.
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
Объяснение:
Чтобы узнать какой цифрой оканчивается число:
Делим показатель степени на число вариантов, тоесть на количество цифр, которыми может оканчиваться число в разных целых положительных степенях, далее смотрим по остатку, который останется (или не останется. если нацело) при делении.
Рассмотрим отдельно каждое слагаемое данной суммы.
54¹=54, оканчивается на 4 (первый вариант, если при делении, указанном выше, остаток получится 1)
54²= 2916, оканчивается на 6 (второй вариант, если при делении остаток получится 2 (нацело))
Вариантов 2.
35÷2= 17 (остаток 1), тогда нам подходит первый вариант, тоесть 54³⁵ будет оканчиваться на 4.
Рассмотрим 28²¹
28¹=28, оканчивается на 8 (первый вариант, если получится остаток 1)
28²=784, оканчивается на 4 (второй вариант, если выйдет остаток 2)
28³=21952, оканчивается на 2 (третий вариант, если получится остаток 3)
28⁴=614656, оканчивается на 6 (четвертый вариант, если получится остаток 4 (нацело))
Вариантов 4.
21÷4=5 (остаток 1), значит первый вариант, тоесть 28²¹ будет оканчиваться на 8.
Сложим последние цифры чисел в степенях.
4+8=12, оканчивается на 2.
Значит 54³⁵ + 28²¹ оканчивается на 2
ответ: 2
1)18 2)24 3)25 4) меньше 23
1) (√18)*2=18 2) (2√6)*2=24 3) 5*2=25 4)
(√5+√6)*2=5+6+√30=11+2√30=11+2√30 меньше,чем 11+2х6=11+12=23
√30 больше 5 и меньше 6
Наибольшее 25,значит наибольшее число 5,так как если квадрат положительного числа наибольший,то и число будет наибольшее.
ответ:число 5.