В решении выше допущено 2 ошибки. Первая ---арифметическая: -3+2=-1, а не -5; вторая, более существенная, связана с неравносильностью преобразований.
Правильный ответ: х=3.
Прежде всего заметим, что при возведении уравнения в квадрат могут появиться новые корни, а именно корни уравнения -(х-1)=sqrt(2x^2-3x–5). Это произойдёт в том случае, если (х-1) < 0, т. е. при x < 1. Если же х-1 >= 0, то корень уравнения (х-1)^2=(sqrt(2x^2-3x–5))^2 будет также корнем исходного уравнения. Таким образом, исходное уравнение эквивалентно не уравнению (х-1)^2=2x^2-3x–5,
а системе (х-1)^2=2x^2-3x–5, x >=1.
Сначала решаем уравнение: (х-1)^2=2x^2-3x–5 2x^2-3x–5-x^2+2x-1=0 x^2-x-6=0 x1=3, x2=-2. Второй корень не удовлетворяет условию x >=1, и, следовательно, не является корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=3, а х-1=-3). Первый корень удовлетворяет условию x >=1, и, следовательно, является также корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=2=х-1).
Пусть было сделано n обменных операций 1-го типа и k операций 2-го типа (по порядку как они шли в условии). Тогда количество золотых монет в результате изменится на величину -4n+5k=0 т.к. их общее количество не изменилось, а при каждой операции 1-го типа золотых уменьшается на 4, и 2-го типа количество золотых увеличивается на 5. На операции каждого типа количество медных монет увеличивается на 1, значит всего было сделано 45 операций, т.е. n+k=45. Отсюда n=45-k, -4(45-k)+5k=0, k=20, n=25. Аналогично, как с золотыми, количество серебряных изменится на величину 5n-8k=5*25-8*20=125-160=-35. Т.е. количество серебряных монет уменьшилось на 35.
Весь план они вдвоем выполнили за 4/0,9 = 40/9 дня. За 1 день они вдвоем выполняли по 9/40 части плана. 1 рабочий выполнит его за x дней, по 1/х части в день. 2 рабочий выполнит его за (x+2) дней, по 1/(х+2) части в день. 1/x + 1/(x+2) = 9/40 Умножаем все на 40x(x+2) 40(x+2) + 40x = 9x(x+2) 40x + 80 + 40x = 9x^2 + 18x 9x^2 - 62x - 80 = 0 D = 62^2 + 4*9*80 = 3844 + 2880 = 6724 = 82^2 x1 = (62 - 82)/18 = -10/18 < 0 x2 = (62 + 82)/18 = 144/18 = 8 x = 8 - за это время 1 рабочий сделает весь план. x+2 = 10 - за это время 2 рабочий сделает весь план.
Первая ---арифметическая: -3+2=-1, а не -5;
вторая, более существенная, связана с неравносильностью преобразований.
Правильный ответ: х=3.
Прежде всего заметим, что при возведении уравнения в квадрат могут появиться новые корни, а именно корни уравнения -(х-1)=sqrt(2x^2-3x–5). Это произойдёт в том случае, если (х-1) < 0, т. е. при x < 1.
Если же х-1 >= 0, то корень уравнения (х-1)^2=(sqrt(2x^2-3x–5))^2 будет также корнем исходного уравнения. Таким образом, исходное уравнение эквивалентно
не уравнению
(х-1)^2=2x^2-3x–5,
а системе
(х-1)^2=2x^2-3x–5,
x >=1.
Сначала решаем уравнение:
(х-1)^2=2x^2-3x–5
2x^2-3x–5-x^2+2x-1=0
x^2-x-6=0
x1=3, x2=-2.
Второй корень не удовлетворяет условию x >=1, и, следовательно, не является корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=3, а х-1=-3).
Первый корень удовлетворяет условию x >=1, и, следовательно, является также корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=2=х-1).