М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fdffxdf
fdffxdf
03.06.2021 06:13 •  Алгебра

разложить на множители 1)7m-m в четвертой 2)4a²- 24ab+36b² 3)pd-pc+6b-6c 4)25-a²

👇
Ответ:
bekkalvina2405
bekkalvina2405
03.06.2021
2. (2a-6b)в квадрате
4. (5-а)(5+а)
4,7(36 оценок)
Открыть все ответы
Ответ:
Fluttys
Fluttys
03.06.2021
Б) f(x)=4-2x
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2

в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
4,5(69 оценок)
Ответ:
Kursova82
Kursova82
03.06.2021

Имеется в виду, что a, b, c - какие-то функции от x. Обычный сводящийся к рассмотрению нескольких случаев раскрытия модулей, хорош, если легко ищутся промежутки, на которых эти функции имеют определенный знак. Если же это не так, можно применить метод, который можно найти в книжке Голубева "Решение сложных и нестандартных задач по математике" (этот метод там не обосновывается, поскольку любой, берущийся за решение сложных и нестандартных задач, должен такое обоснование придумывать самостоятельно). Постараюсь это обоснование привести здесь. Основой метода служат следующие равносильности:

|a|     |a|b\Leftrightarrow \left [ {{ab} \atop {ab} \atop {-ab}} \right..

Доказывать здесь их не хотелось бы. Скажем, в книжке Мерзляка, Полонского и Якира  "Алгебраический тренажер" они используются без доказательства.  Если эти доказательства кому-то нужны, помещайте такое задание, и я обязательно их приведу. Кстати, для тех, кто забыл, напомню, что фигурной скобкой обозначается система, а квадратной - совокупность.

Переходим к неравенству |a|+|b| Перенеся |b| направо, получаем неравенство первого типа, поэтому оно равносильно системе

\left \{ {{a Снова применяем тот же метод, теперь к каждому из неравенств системы, после чего получаем после перенесения  a влево, систему из четырех неравенств, которую для экономии места и времени для написания я изображу в виде \{\pm a\pm b

Рассуждая аналогично, получаем, что

|a|+|b|c\Leftrightarrow [\pm a\pm bc. Естественно, здесь такое обозначение я использовал для совокупности четырех неравенств,  полученных всевозможными раскрытия модулей.

Наконец, если мы имеем модуль и в правой части, то в случае неравенства |a|+|b|<|c| мы получаем систему \{\pm a\pm b\pm a \pm b, причем каждое из этих неравенств равносильно совокупности двух уравнений, полученных разными раскрытиями модуля  c.

Аналогично решается неравенство |a|+|b|>|c|, только здесь получится не система четырех совокупностей, а совокупность четырех систем.

4,4(26 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ