Вкоординатной плоскости от начала координат отложен вектор a ⃗ = ( 8; 3 ) . вычисли координаты конечной точки вектора, который получится из данного вектора параллельным переносом на вектор m ⃗ (0; 5) .
Задания: 1) у>0 при любом х. х∈(-∞; +∞) у<0 таких х не существуют. 2) при х∈[-2; +∞) функция возрастает при х∈(-∞; 2) функция убывает 3) при х=-2 функция принимает наименьшее значение.
(у⁴ + 6у³ + 6у³ + 36у²) + (6у²+5у³)*1 - (12у³-у⁴) =
у⁴ + 6у³ + 6у³ + 36у² + 6у²+5у³ - 12у³+у⁴=
2у⁴ +5у³ + 42у²
2.Разложите на множители :х^3+8=х³+2³=(х+2)(х²-2х+4)
(а-в)²-а² = (а-в-а)(а-в+а)=(-в)(2а-в)
х³+у³+2ху(х+у) = (х+у)(х²-ху+у²) + 2ху(х+у) = (х+у) (х²-ху+у² +2ху)=(х+у) (х²+ху+у²)
3.Представте в виде многочлена :
(в-5)(в-4)-3в(2в-3) =
(в²-4в-5в+20) - (6в²-9в)=
в²-9в+20 - 6в²+9в =
- 5в² +20=
20 - 5в²
3х(х-2)-(х-3)²=
(3х²-6х) - (х-3)(х-3)=
(3х²-6х) - (х²-6х+9)=
3х²-6х - х²+6х-9=
2х² -9
5(а+1)²-10а = 5(а²+2а+1) -10а = 5а²+10а+5 -10а= 5а²+5