график функции можно получить из графика параболы, оставив на месте часть, где функция больше 0 и симметрично отразив относительно Оx другую часть, где функция меньше 0, т.е.
график парабола
находим x вершину =2/2=1
находим y вершину = 1*1-2*1-3=-4
сначалс строим график обычной параболы
затем часть параболы ниже оси x отражаем относительно оси x (переворачиваем)
получаем что-то похожее на w - это график модуля этой параболы
т.к. перед функцией стоит знак - , то отображаем весь график относительно оси x
получаем что-то похожее на м
прямая y=m пересекает этот график ровно в трех точках при x=-4 (где вершина и ветки графика)
получаем
cos α= -√1-(5/13)²= - √1-25/169=-√144/169=-12/13
sin 2α= 2 sinα·cosα=2·(5/13)·(-12/13)=-120/169 причем угол α находится в промежутке π<2α<2π и так как его синус отрицательный, то значит π<2α<3π/2, т.е в третьей четверти и потому перед косиносом двух альфа стави знак минус
cos 2α=-√1- sin²2α=-√1-(-120/169)²=-√(169²-120²)/169²= - √(169-120)(169+120)/169²=-√289·49/169²=-17·7/169-119/169
tg2α=sin 2α: cos 2α=120/119