y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2
Объяснение:
Мы знаем, что число n в степени а/b= Корень с показателем а из числа n в степени b
Давайте переведём корень из пяти в 5 в степени 1/6
Теперь действуем по правилу деления степеней- из показателя делимого вычитаем показатели делителя
То есть 1/3-1/6=2/6-1/6=1/6, значит мы поделили 5 в 1/3 на 5 в 1/6 и от первого числа осталось 5 в 1/6
Получается в скобках у нас останется только 5 в 1/2 * 5 в 1/6
По правилу умножения степеней, чтобы умножить числа с одинаковым основанием нужно сложить из показатели: складываемся 1/2 с 1/6=>3/6+1/6=4/6=2/3
Получаем 5 в 2/3
Чтобы возвести степень в степень умножаем показатели, получается нужно 2/3 умножить на три, проучится 2, то есть все это равно 5^2, что равно 25
ответ: 1) 3 и 9; 2) 15 и 40.
Объяснение:
1) Сумма 12, разность 6
Так как разность двух чисел равна 6, то уменьшаемое (1 число) больше вычитаемого (2 число) на 6. Значит 1 число можно представить как сумму 2 числа и 6.
Тогда, если сложить эти два числа, то мы получим сумму удвоенного 2 числа и 6, что равно 12. Откуда 2 число в два раза меньше разности 12 и 6, то есть оно равно 3. Чтобы при сложении двух чисел (1 числа и 3) получилось 12, второе слагаемое (1 число) должно быть равно 9.
Алгебраическая запись:
Пусть a -- второе число, тогда a+6 -- первое число. Составим уравнение, используя условие суммы:
a + (a + 6) = 12
2a + 6 = 12
2a = 6
a = 3 -- второе число
a + 6 = 3 + 6 = 9 -- первое число
2) Сумма 55, разность 25
Так как разность двух чисел равна 25, то уменьшаемое (1 число) больше вычитаемого (2 число) на 25. Значит 1 число можно представить как сумму 2 числа и 25.
Тогда, если сложить эти два числа, то мы получим сумму удвоенного 2 числа и 25, что равно 55. Откуда 2 число в два раза меньше разности 55 и 25, то есть оно равно 15. Чтобы при сложении двух чисел (1 числа и 15) получилось 55, второе слагаемое (1 число) должно быть равно 40.
Алгебраическая запись:
Пусть a -- второе число, тогда a+25 -- первое число. Составим уравнение, используя условие суммы:
a + (a + 25) = 55
2a + 25 = 55
2a = 30
a = 15 -- второе число
а + 25 = 15 + 25 = 40 -- первое число