М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KatinaDobet2006
KatinaDobet2006
26.06.2022 01:47 •  Алгебра

Решить 1) доказать тождество 1=sin^(2)a+ctg^(2)asin^(2)a 2)найти площадь фигуры ограниченную линиями: y=x^2; y=-3x

👇
Ответ:
cooldasha11042
cooldasha11042
26.06.2022
sin^{2} \alpha + ctg^{2} \alpha *sin^{2} \alpha =1

sin^{2} \alpha + \frac{cos ^{2} \alpha *sin ^{2} \alpha }{sin ^{2} \alpha } =1

Синус квадрат альфа сократиться, и получится основное тригонометрическое тождество:
sin^{2} \alpha + cos^{2} \alpha =1
4,6(48 оценок)
Ответ:
pro100miss
pro100miss
26.06.2022
1)sin²a+cos²a/sin²a *sin²a=sin²a+cos²a=1
1=1
2)x²=-3x⇒x²+3x=0⇒x(x+3)=0⇒x=0 U x=-3
s=S(от -3 до 0)(-3x-x²)dx=-3x²/2-x³/3(от -3 до 0)=27/2-9=4,5кв ед
4,7(22 оценок)
Открыть все ответы
Ответ:
14251714
14251714
26.06.2022

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

4,6(93 оценок)
Ответ:
Yxcvbnm3
Yxcvbnm3
26.06.2022
1)
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.

2) 
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.

3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной  t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2  не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.

4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0  ;  * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2  не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒    x =(-1)^n *(π/6) + πn , n∈Z .

5).   2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3²  * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;

x =±π/3 +2πn , n∈Z .
4,7(45 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ