в случае неравномерного движения, когда v≠const
v(t)=ds/dt
ds=v(t)dt
t₂
s=∫ v(t)dt
t₁
нужно найти путь, пройденный точкой за седьмую секунду. это период времени с 6 секунды по 7 секунду. для нашего случая можно записать:
₇ ₇
s=∫(3t²+6t-1)dt =t³+3t²-t | =(7³+3*7²-³+3*6²-6)= 483-318 =165 (м)
⁶ ⁶
ответ: 165 м
подробнее - на -
Объяснение:
a + b = 5; ab = 3
a^3*b^2 + a^2*b^3 = a^2*b^2*(a+b) = (ab)^2*(a+b) = 3^2*5 = 9*5 = 45
(a-b)^2 = a^2 + b^2 - 2ab = a^2 + 2ab + b^2 - 4ab = (a+b)^2 - 4ab = 5^2 - 4*3 = 13
a^4 + b^4
Здесь сложнее. Сначала найдем
a^2 + b^2 = a^2 + 2ab + b^2 - 2ab = (a+b)^2 - 2ab = 5^2 - 2*3 = 19
Теперь найдем
(a^2 + b^2)^2 = a^4 - 2a^2*b^2 + b^4 = a^4 + b^4 - 2(ab)^2
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2
Но мы знаем, что
(a^2 + b^2)^2 = 19^2 = 361.
Отсюда
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2 = 19^2 + 2*3^2 = 361 + 18 = 379
1/log(b)ab=1/log(∛2)2
log(b)ab=log(∛2)2
log(b)a=log(∛2)2-1=3-1=2