1) На 3 полках было x, y, z книг { x + y + z = 95 { x = 2y Только такая система не решается, или ошибка в условии. Может, там было две полки? Или условие про 3-ью полку пропущено?
2) В 3 цехах x, y, z рабочих { x + y + z = 245 { y = 3x { z = x - 15
3) Всего в книге x страниц. В 1 день он прочитал 0,25x, во 2 день 0,3x, а в 3 день 135 страниц. Тут система не получается, одно уравнение. 0,25x + 0,3x + 135 = x
4) Это задача такая же, как 3) 0,4x + 0,25x + 140 = x
5) Длина участка а, ширина b. { a = b + 3 { S = a*b = 40 P = 2*(a + b) = ?
6) Как и в 5), длина а, ширина b { a = b + 3 { P = 2(a + b) = 46
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74) и (7,35/√24,49/√24)
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49 ab=35 a^2+b^2=49
a=35/b откуда b^4-49b^2+1225=0 D<0 то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.
17 + 1 + 7 = 25
25 + 2 + 5 = 32
32 + 3 + 2 = 37
37 + 3 + 7 = 47
47 + 4 + 7 = 58
58 + 5 + 8 = 71
71 + 7 + 1 = 79
79 + 7 + 9 = 95
т.е. закономерность выглядит так: 17, 25, 32, 37, 47, 58, 71, 79, 95...