Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
касательная y=5х+8, x₀>0
y`=5
y`=30x-b
30x-b=5
x₀=(5-b)/30
{y=15x²+bx+23
{y=5x+8
15x²+bx+23=5x+8
15x²+bx+23-5x-8=0
15x²+x(b-5)+15=0
D=(b-5)²-(4*15*15)
b²-10b+25-900=0
b²-10b-875=010
D=10²-4*1*(-875)=3600 √3600=60
b₁=(10+60)/2=35
b₂=(10-60)/2=-25
1) x₀=(5-35)/30=-1<0 - лишний корень, по условию, х₀>0)
2) x₀=(5-(-25))/30=1>0 - удовлетворяет условию
ответ: b=-25
Проверка:
y=15x²-25x+23
y`=30x-25
y(1)=15-25+23=13
y`(1)=30-25=5
Касательная: y=f(x₀)+f`(x₀)*(x-x₀)
y=13+5(x-1)
y=13+5x-5
y=5x+8
График для наглядности