2 Сos² 2x -1 +Cos 2x = 0 2 Cos² 2x - Cos x -1 = 0 Решаем как квадратное a) Cos 2x = 1 б) Cos 2x = -1/2 2x = 2πk, где к ∈Z 2x = +- arc Cos (-1/2) +2π n , где n∈Z х = π к, где к∈Z 2x = +-2π/3 + 2πn, где n∈Z x = +- π/3 + πn,где n∈ Z Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток Разберёмся с указанным отрезком на числовой прямой -π -π/2 0 π/3 а) х = πк,где к ∈Z k = -1 x = -π ( попадает в указанный отрезок) к = 0 х = 0 ( попадает в указанный отрезок) к = 1 к = 2 х = 2π( не попадает в указанный отрезок) б) х = +- π/3 +πn,где n ∈Z n = 0 x = +-π/3 (попадает в указанный отрезок) n = 1 х = π/3 + π( не попадает) х= - π/3 +π ( не попадает) n = -1 x = π/3 - π = -2π/3( попадает) х = -π/3 -π(не попадает)
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
Выносим общий множитель
Добавим и вычтем одинаковые слагаемые
Пусть
Находим дискриминант
Воспользуемся формулой корней квадратного уравнения
ОБратная замена