ответ:
ответ: 2 км/ч.
объяснение:
решение:
пусть скорость плота х км/ч,учитываем,что скорость плота равна скорости течения реки,тогда по течению скорость лодки равна (8 + х) км/ч, а против течения (8 - х) км/ч.
составим уравнение:
15/(8+x)+ 6/(8-x)=5/x;
(120-15х+48+6х)/(64+х²)=5/x;
(168-9x)/(64+x²)-5/x=0;
(168x-9x²-320+5x²)/(64х+х³)=0;
168x-9x²-320+5x²=0;
-4x²+168x-320=0;
сокращаем на -4:
x²-42x+80=0;
d=b²-4×a×c
d=(-42²)-4×1×80 = 1764-320=1444
d> 0, 2 корня
х₁=42+√1444/2×1 =42+38/2=80/2=40 (км/ч)---не подходит(так как плот не может плыть быстрее лодки, значит х=40 не является решением);
х₂=42-√1444/2×1=42-38/2=4/2=2 -(км/ч)---скорость течения реки;
ответ: 2 км/ч.
5sin²(x) + 3sin(x)cos(x) - 6cos²(x) = 1
• Упростим уравнение:
5sin²(x) + 3sin(x)cos(x) - 6cos²(x) = sin²(x) + cos²(x)
<=>
4sin²(x) + 3sin(x)cos(x) - 7cos²(x) = 0
• Получили однородное тригонометрическое уравнение II типа, значит поделим всё на cos²(x), причём:
cos(x) ≠ 0
x ≠ π/2 + πn, n ∈ ℤ
• Получаем:
4tg²(x) + 3tg(x) - 7 = 0
Пусть tg(x) = t, тогда tg²(x) = t²
4t² + 3t - 7 = 0
D = 9 - 4 • 4 • (-7) = 9 + 112 = 121 = 11²
t₁ = (-3 + 11)/8 = 1
t₂ = (-3 - 11)/8 = -14/8 = -7/4
• Перейдём к системе:
[ tg(x₁) = 1
[ tg(x₂) = -7/4
<=>
[ x₁ = π/4 + πn, n ∈ ℤ
[ x₂ = -arctg(7/4) + πn, n ∈ ℤ
ответ: x₁ = π/4 + πn, n ∈ ℤ ; x₂ = -arctg(7/4) + πn, n ∈ ℤ
{u + v = 11, uv = 30}
По теореме Виета u, v - корни уравнения t^2 - 11t + 30 = 0, т.е. 5 и 6.
1) (u, v) = (5, 6)
{x + y = 5, xy = 6}
Аналогично, x, y - корни уравнения t^2 - 5t + 6 = 0, т.е. 2 и 3.
2) (u, v) = (6, 5)
{x + y = 6, xy = 5}
t^2 - 6t + 5 = 0 - корни 1 и 5.
ответ. (2, 3), (3, 2), (1, 5), (5, 1).