Дана функция у = (x³ -6x² + 32)/(4 - x). Если х не равен 4, то числитель можно разделить на знаменатель и получим квадратичную функцию у = - x² + 2x + 8. График её - парабола ветвями вниз. Заданное условие выполняется, когда прямая y = а является касательной к графику в вершине параболы. Хо = -в/2а = -2/(2*(-1)) = 1. Отсюда имеем один из ответов: а = у(х=1) = -1+2+8 = 9. Так как заданная функция не существует в точке х = 4, то прямая у = 0 пересекает график только в точке х = -2. Второй ответ: а = 0.
Выделение полного квадрата означает, что мы будем иметь выражение вида (...)² + (...), причем если данное выражение не является само полным квадратом, то помимо самого квадрата останется еще какое-то выражение, которое я взяла во вторые скобки. Рассмотрим полный квадрат: например, (nx + a)² = n²x² + 2nxa + a². Нам будет удобнее всего, если 4x² войдет в полный квадрат. Тогда удобнее взять в качестве n или 1, или 2. Я рассмотрю оба В качестве a также можем взять любое число. Т.к. в нашем выражении свободный член - 3, удобнее всего брать единицу. 1) будем выделять (x + 1)² = x² + 2x + 1: Т.к. у нас 4x², выделим 4(x + 1)² = 4x² + 8x + 4. 4x² + 7x + 3 = 4x² + 8x - x + 4 - 1 = 4(x + 1)² - (x + 1) = (x + 1)(4x + 4 - 1) = (x + 1)(4x + 3). То есть решаем уравнение (x + 1)(4x + 3) = 0. Чтобы выражение было равно нулю, нужно, чтобы одна из скобок была равна 0: x = -1 или x = -.