Сложим уравнения системы:
Теперь умножим обе части первого уравнения на , причем в правой части вместо этого выражения запишем равное ему выражение
. Поскольку
, то равняется нулю это выражение при неположительных значениях "х" и/или "у". Однако, по условию "х" и "у" - положительные числа, поэтому если при таком умножении и происходит потеря решений, то эти решения не удовлетворяют условию.
После умножения получим:
Поскольку по условию , то обе части равенства разделим на
:
Поменяем местами левую и правую части:
Сложим левые и правые части равенств, записанных в рамках:
Решаем квадратное уравнение относительно искомой суммы:
Как видно, два найденных значения суммы положительны. Вследствие этого нельзя гарантировать того, что для каждой из этих двух сумм "х" и "у" положительны.
Рассмотрим второе уравнение в рамке:
С этого уравнения мы сможем найти "у", а зная "у" и зная сумму - впоследствии найти "х". Таким образом, можно будет определить знаки чисел "х" и "у".
Выполним проверку для случая :
В этом случае значение "у" отрицательно. Значит, такой ответ не удовлетворяет условию.
Выполним проверку для случая :
Числитель оценим следующим образом:
Таким образом, числитель положителен. Значит:
Найдем "х":
Оценим следующим образом:
Значит:
Таким образом, случай удовлетворяет условию.
Решить систему можно было непосредственно выразив переменную "х" из первого уравнения и подставив полученное выражение во второе уравнение. Вся задача будет состоять только в аккуратном преобразовании, в результате которого должно получиться три значения "у": ноль, отрицательное и положительное. Поскольку по условию "у" должен быть положительным, то только для этого значения нужно будет просчитать значение "х", после чего найти требуемую сумму.
ответ:
Площадь - это число, показывающие сколько места занимает фигура. Площадь вычисляется с произведения. Для того, чтобы найти площадь, нужно ширину умножить на длину. У квадрата все стороны равны, а значит ширина равна длине. Имея эти данные, мы можем вычислить его стороны. В условии сказано, что одна из сторон равна 4 м., а стало быть и остальные равны 4 м. Теперь мы можем вычислить площадь квадрата(учитывая то, что ширина равна длине). Обозначается площадь латинской буквой S:
Но это ещё не всё. Площадь измеряется в квадратах. К примеру: см², мм², м², и т.д.
Так как в условии даны м., значит и площадь будет м².
ответ: 16 м²
2)5x-1-3c+5/x^2=5x-3c+4/x^2
3)6x+2y+x-2y/6x=7x/6x=7/6