Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к
. Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство:
, где
- это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато
мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять
. Нам известно, что
, и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как
, то
. Положительное число должно быть больше нуля, и очевидно, что
при
. Поэтому подставляем наше первое значение:
. При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше,
.
Точно так же подставляем в .
По формуле приведения , поэтому:
А потому и является искомым периодом.
ответ: В)
Решение
KLMN - ромб (все стороны равны).
Площадь ромба равна половине произведения диагоналей,
диагонали ромба - равны сторонам прямоугольника,
поэтому площадь ромба равна половине площади прямоугольника.
Ромб разделен на три треугольника MNP, NKP и MPL.
Площадь треугольника MNP равна сумме площадей NKP и MPL,
так как основание треугольника MNP - MN, равно сумме оснований NKP и MPL - KP и PL, а высоты, проведенные к этим основаниям равны . Значит, площадь треугольника MNP равна половине площади ромба KLMN и четверти площади прямоугольника ABCD.
Площадь треугольника MNP = 36/4 = 9.
ответ: 9
Вычислим дискриминант:
D=b2−4ac=12−4·1·(−56)=1+224=225
(D>0), следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
x(1,2)=−b±√D2ax1=−b+√D2a=−1+152·1=142=7x2=−b−√D2a=−1−152·1=−162=−8
x2+x−56=(x−7)(x+8)=0
ответ:
x1=7
x2=−8
б) 3х^4-13х2+4=0
Пусть x2=t, тогда
3t2-13t+4=0
d=169-48=121
t1=(13+11)/6=4
t2=(13-11)/6=1/3
x2=4
x1=2
x2=-2
x2=1/3
x3=корень из 1/3
x4= корень из -1/3
ответ:2;-2;-1/3;1/3