Объяснение:
a) найдем производную функции
f'=2x приравняем к нулю x=0
если x<0 то, производная имеет знак -
если x>0 то, производная имеет знак +
Таким образом при x=0 функция имеет минимальное значение, это удовлетворяет указанному отрезку x∈[-5;2]
b)
скорее всего условие неправильно записано, иначе
f(x)=3 просто прямая, не имеющая пересечения с Оx
или же
f=-3x+6, тогда
найдем производную функции
f'=-3 как видим производная не равна нулю, а следовательно, данная функция не имеет минимумов или максимумов
Объяснение:
a) найдем производную функции
f'=2x приравняем к нулю x=0
если x<0 то, производная имеет знак -
если x>0 то, производная имеет знак +
Таким образом при x=0 функция имеет минимальное значение, это удовлетворяет указанному отрезку x∈[-5;2]
b)
скорее всего условие неправильно записано, иначе
f(x)=3 просто прямая, не имеющая пересечения с Оx
или же
f=-3x+6, тогда
найдем производную функции
f'=-3 как видим производная не равна нулю, а следовательно, данная функция не имеет минимумов или максимумов
2х-3х+3=4+2х-2
2х-3х-2х=4-2-3
-3х=-1
х=1/3.