нет
Объяснение:
2x² +2x +1 -7y² = 2007 ⇔ 2x²+2x -2006 = 7y² ( 1 )
так как левая часть равенства ( 1 ) - четное число , то и правая
часть кратна 2 ⇒ 7y² делится на 2 ⇒ y делится на 2 ⇒
y = 2k ; k∈Z , подставим в (1) вместо y число 2к :
2x²+2x -2006 =28k² ⇒ x²+x -14k² = 1003 или :
x(x+1) -14k² = 1003 ( 2 )
x и ( x +1 ) - 2 последовательных натуральных числа ⇒ одно
из них обязательно четно ⇒ x(x+1) - четно ⇒ x(x+1) -14k² - четно
, как разность двух четных чисел , но 1003 - нечетное число
⇒ равенство ( 2) невозможно ⇒ уравнение (1) не имеет
решений в целых числах
Пусть стороны прямоугольника равны х см и 28 - х см. Тогда площадь прямоугольника S(x) = x(28 - x), где x ∈ [0; 28].
S(x) = 28х - x².
S'(x) = (28х - x²)' = 28 - 2x;
S'(x) = 0;
28 - 2x = 0;
x = 14.
S(0) = 0;
S(14) = 28·14 - 14² = 14(28 - 14) = 14² = 196
S(28) = 28·28 - 28² = 28² - 28² = 0
Наибольшую площадь имеет прямоугольник с сторонами по 14 см т.е. квадрат. Центр окружности описанной около квадрата есть точкой пересечения его диагоналей и радиус этой окружности равен половине диагонали. Диагональ квадрата равна 14√2 см, а радиус равен 7√2 см.
ответ: 7√2 см.
Первая. Пусть а и b - две разные ненулевые данные цифры (двузначные числа не могут начинаться с 0). Тогда числа образованные с их пощью 10а+в (двузначное число в котором цифра а - количевство десятков, b - количевство единиц), 10a+a, 10b+a, 10b+b. Их сумма
10a+b+10a+a+10b+a+10b+b=22a+22b=22(a+b)=2*11 (a+b)
так как числа 2 и 11 взаимно простые, а сумма должна быть квадратом, то второй ненулевой множитель a+b должен делится на 22, что невозможно так как a и b - цифры, то их сумма не превышает 9+9=18
Таким образом сумма четырех различных двузначных чилес, записанных с двух заданных цифр не может быть квадратом натурального числа. Доказано
Вторая. х^2+5y^2+4xy+2y+1=0
x^2+4xy+4y^2+y^2+2y+1=0
(x+2y)^2+(y+1)^2=0
так как квадрат любого выражения неотрицателен, сумма двух неотрицательных неотрицательное и равно 0, только если каждое из слагаемых равно 0, то
x+2y=0
y+1=0
y=-1
x=-2y=-2*(-1)=2
ответ: (2;-1)