М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
arinkaapelsink
arinkaapelsink
16.07.2022 21:47 •  Алгебра

Миша, виталик и олег решили купить одну книгу. мише не хватало на покупку книги 15 грн., виталику 37 грн., олегу 26 грн. сложив деньги обнаружили, что полученной суммы, не хватает на покупку книги. сколько стоит книга, если её цена выражается целым числом гривны

👇
Ответ:
Elizabet4722
Elizabet4722
16.07.2022
ответ: 38 гривен. Решается методом подбора.
4,8(74 оценок)
Открыть все ответы
Ответ:
natgaleeva82
natgaleeva82
16.07.2022
Так как n+m+k делится на 6, то n+m+n=6a, где a - некоторое целое число.
Тогда n = 6a-(m+k). Подставим это в выражение n³+m³+k³:
(6a-(m+k))³+m³+k³ = (6a)³-3*(6a)²(m+k)+3*(6a)(m+k)²-(m+k)³+m³+k³.
Заметим, что (6a)³-3*(6a)²(m+k)+3*(6a)(m+k)² делится на 6, так как каждое из слагаемых делится на 6. Значит, надо доказать, что -(m+k)³+m³+k³ делится на 6.
-(m+k)³+m³+k³=-m³-3m²k-3mk²-k³+m³+k³=-3mk(m+k) - делится на 3.
Докажем, что это выражение делится и на 2.
1) Если хотя бы одно из m и k делится на 2, то mk делится на 2.
2) Если m и k нечетные, то m+k делится на 2.
Таким образом, -3mk(m+k) делится на 6, а значит, n³+m³+k³ делится на 6, что и требовалось доказать.
4,4(16 оценок)
Ответ:
404678
404678
16.07.2022
1 cпособ. n³+m³+k³=(n³-n)+(m³-m)+(k³-k)+(n+m+k)=n(n²-1)+m(m²-1)+k(k²-1)+(n+m+k)=(n-1)n(n+1)+(m-1)m(m+1)+(k-1)k(k+1)+(n+m+k).
Т.к. произведение трех последовательных чисел делится на 6 и по условию n+m+k тоже делится на 6, то все доказано.

2 cпособ. Куб числа имеет такой же остаток при делении на 6, как и само число (это легко проверить, перебрав все числа вида 6k, 6k+1, ... 6k+5). По условию n+m+k делится на 6, т.е. сумма остатков от деления n, m, k делится на 6, а значит и сумма остатков кубов (у них те же остатки) тоже делится на 6.

Если n+m+k≡0 (mod 6), то n+m≡-k(mod 6).
Значит -k³≡(n+m)³=n³+m³+3nm(n+m)≡n³+m³-3nmk (mod 6).
Т.е. n³+m³+k³≡3nmk (mod 6).
Т.к. среди чисел n, m, k обязательно есть четное (иначе их сумма была бы нечетным числом и значит не делилась бы на 6), то 3nmk≡0 (mod 6), т.е.
n³+m³+k³≡0 (mod 6).
4,7(33 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ