М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
papashamuslimo
papashamuslimo
10.04.2020 14:11 •  Алгебра

Решите систему: sin^2(x)+sin^2(2x)=sin^2(3x) cosx < -1/2

👇
Ответ:
mikran
mikran
10.04.2020

sin²x+sin²(2x)=sin²(3x)

cosx < -1/2

Преобразуем первое уравнение с формулы  sin²x = (1 - cos(2x))/2.

Получаем

cos(2x) + cos(4x) = 1 + cos(6x)

Воспользумся формулами кратного аргумента

cos(2x) = 2 * cos²x - 1   и  cos(3x) = 4*cos³x - 3*cosx

Положив  cos(2x) = y , получаем уравнение

у + 2*у² - 1 = 4*у³ - 3*у + 1

4*у³- 2*у² -4*у + 2=0

2*у²*(2*у - 1) - 2*(2*у - 1) = 0

2*(у² - 1) * (2*у - 1) = 0

4 * (у - 1) * (у + 1) * (у - 0,5) = 0

cos(2x) = 1         cos(2x) = -1              cos(2x) = 0,5

2x = 2*π*n         2x = π + 2*π*n             2x = ±π/3 + 2*π*n

x = π * n             x = π/2 + π*n             x = ±π/6 + π*n

Теперь выберем из полученных ответов те, для которых  cos x < -1/2,

воспользовавшись формулой приведения  cos(π+x) = -cos x

Получаем    х = π + 2*π*n  и   х = ±5*π/6 + 2*π*n

(для первой серии решений  cos x = ±1 ,  для второй   cos x = 0 ,

а  для  третьей   cos x = ± √ 3 / 2 , поэтому вторую серию мы пропускаем,

а из первой и третьей берем половину значений)

4,6(44 оценок)
Открыть все ответы
Ответ:
аааааа333
аааааа333
10.04.2020
1) Пусть k>0. Возьмём два значения x1 и x2, причём x2>x1. Исследуем разность y(x2)-y(x1)=k*x2+m-(k*x1+m)=k*(x2-x1). Поскольку x2>x1, то x2-x1>0, а тогда - так как k>0 - и y(x2)-y(x1)=k*(x2-x1)>0. Таким образом, при x2>x1 y(x2)>y(x1), а это значит, что при k>0 функция y=k*x+m монотонно возрастает.

2) Пусть теперь k<0. Снова возьмём два значения x1 и x2, причём x2>x1. Исследуем разность y(x2)-y(x1)=k*x2+m-(k*x1+m)=k*(x2-x1). Поскольку x2>x1, то x2-x1>0, но так как k<0, то y(x2)-y(x1)=k*(x2-x1)<0. Таким образом, при x2>x1 y(x2)<y(x1), а это значит, что при k<0 функция y=k*x+m монотонно убывает.

 
4,6(41 оценок)
Ответ:
Ferklo
Ferklo
10.04.2020
Во-первых, дальше следует вынести - из знаменателя за знак дроби.
После этого немного преобразуем дробь.

y = - \frac{x - 4}{x+3}
y = - \frac{x+3 - 7}{x+3}
y = -( \frac{x+3}{x+3} - \frac{7}{x+3} ) \\ y = -1 + \frac{7}{x+3}

А это есть обыкновенная гипербола y = \frac{7}{x}, сдвинутая на 3 влево по оси x и на 1 вниз по оси y.
Поэтому строите гиперболу и сдвигаете её.

Здесь есть ещё один подводный камень. При упрощениях дроби Вы сократили её на x - 3. Это очень полезно в плане понимания того, что из себя представляет график функции, но достаточно опасно в плане деления на 0. А если x = 3?
Ведь эта точка  ВХОДИЛА в область определения дроби перед преобразованиями. Поскольку x -3  находилось в знаменателе. А теперь как бы НЕ входит, ибо это выражение ушло. Так что учитываем то, что было сначала. После построения графика необходимо убрать точку x = 3, выколов её на графике.
4,4(42 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ