М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Алимакдр
Алимакдр
09.08.2021 19:55 •  Алгебра

При каких значениях а: разность дробей 3а-5/а^2-1 и 6а-5/а-а^2 равна дроби 3а+2/а^2+а?

👇
Ответ:
evgeniykorotkov
evgeniykorotkov
09.08.2021

\frac{3a-5}{a^2-1}-\frac{6a-5}{a-a^2}=\frac{3a+2}{a^2+a}

\frac{3a-5}{(a-1)(a+1)}+\frac{6a-5}{a(a-1)}=\frac{3a+2}{a(a+1)}

Домножаем на общий знаменатель, получим
a(3a-5)+(a+1)(6a-5)=(a-1)(3a+2) 

3a^2-5a+6a^2+a-5=3a^2-a-2

6a^2-3a-3=0

2a^2-a-1=0

(2a+1)(a-1)=0 - делим на вторую скобку, т.к. она не может быть нулем

2a+1=0

x=-1/2

4,4(18 оценок)
Открыть все ответы
Ответ:
sergantmomo
sergantmomo
09.08.2021
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x).
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.

2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) =  (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Решить 1) записать уравнение касатальной к графику функции f(x)=4x-sinx+1 в точке x0=0 2) найти знач
4,5(70 оценок)
Ответ:
2005Киса
2005Киса
09.08.2021
1) (ab - ac) + (yb - yc) = a(b - c) + y(b -c) = ( b - c)(a +y)
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
4,4(63 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ