х-числитель искомой дроби, тогда (х+2) - знаменатель ее. обратная к искомой дроби будет (х+2)/х. Можно составить уравнеие:
х/(х+2) + (х+2)/х = 130/63
ОДЗ: х не равен 0 и х не равно -2. и еще х должен быть положительным.
приводим к общему знаменателю слагаемые:
(х²+(х+2)²) / (х*(х+2)) = 130/63
(х²+х²+4х+4) / (х*(х+2)) = 130/63
(2х²+4х+4) / (х*(х+2)) = 130/63
63(2х²+4х+4) = 130*х*(х+2)
сократим на 2 обе части:
63х²+126х+126=65х²+130х
2х²+4х-126=0
х²+2х-63=0
Д=4+252=256-2 корня
х1=(-2+16)/2=14/2=7
х2=(-2-16)/2=-18/2=-9 - не удовлетворяет ОДЗ, значит не подходит
Находим знаменатель дроби: 7+2=9
Получили дробь: 7/9.
Проверка:
7/9 + 9/7 = (49+81)/63 = 130/63 - верно
ответ: искомая дробь: 7/9.
Дано уравнение:
а) Решите уравнение.
б) Укажите корни уравнения, принадлежащие отрезку
Решение:
а) Для преобразования используем формулу приведения для косинуса и формулу синуса двойного угла:
Тогда cos x = 0 или sin x = 0,5
Решим cos x = 0. Формулы для нахождения корней уравнения вида cos x = a:
Обе формулы можем объединить в одну:
Получим:
Можно записать в виде:
Решим sin x = 0,5. Запишем формулы для нахождения корней уравнения вида sin x = a.
Решением являются два корня (k — целое число):
Получим:
б) Найдём корни уравнения, принадлежащие отрезку.
Суть применяемого заключается в следующем:
1. Берём поочерёдно каждый корень уравнеия.
2. Составляем двойное неравенство.
3. Решаем это неравенство.
4. Находим коэффициент k.
5. Подставляем найденный коэффициент(ты) обратно в выбранный корень и вычисляем.
Так для каждого найденного нами корня. Итак, первый корень:
Решаем неравенство:
Так число k целое, то k1 = 2 k2 = 3
Находим корни, принадлежащие интервалу:
Следующий корень:
Решаем неравенство:
Для полученного неравенства целого числа k не существует.
Следующий корень:
Решаем неравенство:
Так как число k целое, то k = 1.
Находим корень принадлежащий интервалу:
Получили три корня (выделены жёлтым):
*Обратите внимание, что использовали знак нестрого неравенства, так как границы интервала включены (входят) в интервал.