М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
stacezoloto
stacezoloto
05.06.2020 02:07 •  Алгебра

Решите биквадратное уравнение: x^4-29x^2+100=0

👇
Ответ:
Salina1904
Salina1904
05.06.2020
Пусть х^2=y, y≥0.
y^2-29y+100=0
y=25
y=4
y=25 => x^2=25 x=+-5
y=4 => x^2=4 x=+-2
4,5(24 оценок)
Открыть все ответы
Ответ:
tsyhanenkok
tsyhanenkok
05.06.2020
 а)  cos(πx)=x²-4x+5.
Имеем уравнение вида
 f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает  наименьшее значение,  равное 1при х=2.
х=2-  единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.

О т в е т. х=2

б)cos(cosx)=1

cos x=2πn, n∈ Z

Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1,  n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.

Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.

О т в е т. x=(π/2) + πk, k∈Z.
4,8(64 оценок)
Ответ:
tyrone12
tyrone12
05.06.2020

Биквадратное уравнение.

Решается заменой переменной:

x^2=t

t^2+(3a+1)t+0,25=0

D=(3a+1)^2-4\cdot 0,25=9a^2+6a+1-1=9a^2+6a

Если  D >0,   т.е.

9a^2+6a0\\\\3a(3a+2) 0

a\in (-\infty; -\frac{2}{3})U(0;+\infty)

уравнение имеет корни:

t_{1}=\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}     или   t_{2}=\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}

Обратный переход:

x^2=\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}      или     x^2=\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}

Уравнение x^2=с  имеет корни, если c> 0, тогда корни противоположны по знаку

Чтобы корни данного уравнения были равны,

с=0

\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}=0

\sqrt{ 9a^2+6a}=-(3a+1)

Это иррациональное уравнение.

При (3a+1) >0 оно не имеет корней.

При (3а+1) ≤0

возводим обе части уравнения в квадрат:

9a^2+6a=9a^2+6a+1

0=1 - неверно, нет таких значений а

Аналогично

\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}=0

\sqrt{ 9a^2+6a}=(3a+1)

При (3a+1) < 0 оно не имеет корней.

При (3а+1) ≥0

возводим обе части уравнения в квадрат:

9a^2+6a=9a^2+6a+1

0=1 - неверно, нет таких значений а

Если   D=0, т.е   9a^2+6a=0

a=0    или      a=-\frac{2}{3}

При  a=0  

уравнение принимает вид:

x^4+x^2+0,25=0

D=1^2-4\cdot 0,25=0    ⇒  x^2=-1

уравнение не имеет корней

При  a=-\frac{2}{3}  

уравнение принимает вид:

x^4-x^2+0,25=0

D=1-4\cdot 0,25=0     ⇒     x^2=\frac{1}{2}

x=\pm\frac{\sqrt{2} }{2}

Уравнение 4-ой степени, значит

x_{1,2}=-\frac{\sqrt{2} }{2}   и   x_{3,4}=\frac{\sqrt{2} }{2}

О т в е т. При a=-\frac{2}{3}

4,8(82 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ