x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.Обозначим первое число буквой x, тогда второе -(x+7), третье число - (x+14). Из условия задачи имеем:
x*(x+14)=x*(x+7)+56... (1)
поскольку числа x и (x+14)- крайние числа
x - меньшее из чисел
(x+7) - среднее число
Преобразуем левую и правую части уравнения ,раскрыв скобки, перенеся члены с неизвестной в левую часть, а свободные члены в правую часть и приведя подобные, получим равносильное уравнение: 7x=56, откуда x=8
А значит второе и третье число соотвественно будут (8+7)=15 и (15+7)=22
ответ: 8, 15, 22
20=2х
х=10
г)3х-3+х=2х
-3=-2х
х=1,5
е)5х+20+х=6
6х=-14
х=-7/3
з)3х-21-6х=-х
-21-3х=-х
-21=2х
х=-10,5
к)2х+(6/5)-х=16/5
х=10/5
х=2
м)-2((1/3)з+7=-21
(-2/3)х-14=-21
(-2/3)х=-7
х=21/2=10,5