Есть правило нахождении предела отношения дробно-рациональной функции при х---> к бескон.Если многочлен в числителе имеет степень, равную степени многочлена в знаменателе, то предел равен отношению коэффициентов перед СТАРШИМИ степенями.Доказывается это с деления числителя и знаменателя на старшую степень и учёта того, что константа, делённая на бесконечно большую велмчину равна 0 (беск.малой величине). В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:
Конечно, удобнее пользоваться готовым правилом.
Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0. Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности. Например:
y^3+64=(64+y^3)*1
x^2-10x+25=25+(x-10)*x
9y^2-4=0
9y^2=4
y^2=4/9
y=(4/9):(4/9)
y=1
a(a+2b)+(b+a)=a^2+2ab+a+b