5. (a+c)(a-c)-b(2a-b)-(a-b+c)(a-b-c)=0 a²-ac+ac-c²-2ab+b²-(a²-ab-ac-ab+b²+bc+ac-bc-c²)=0 (знак минус перед скобкой меняет знаки на противоположный) a²-ac+ac-c²-2ab+b²-a+ab+ac+ab-b²-bc-ac+bc+c²=0 (cокращаем члены с противоположными знаками) -2ab+ab+ab=0 -2ab+2ab=0 (cокращаем) 0=0 Надеюсь, что еще не поздно
Для нахождения наибольшего и наименьшего значения функции найдем ее производную: Y'=(3x^4+4x3^+1)'= 12x^3+12x^2Теперь найдем точки при которых производная равна нолю 12x^3+12x^2=012х^2(x+1)=0 откуда получаем два новых уравнения 12х^2=0 и х+1=0 х=0 х=-1 Обе точки попадают в заданный интервал Теперь находим значенеи функции в найденных точках и на концах отрезка у(0)=3*0^4+4*0^3+1=0+0+1=1 у(-1)=3*(-1)^4+4*(-1)^3+1=3-4+1=0 у(-2)=3*(-2)^4+4*(-2)^3+1=48-32+1=17 у(1)=3*1^4+4*1^3+1=3+4+1=8 Отсюда видно что наибольшее значение функции на отрезке (-2,1)=у(-2)=17, а наименьшее на этом же отрезке=у(-1)=0
810+45x+504-28x=4(18-x)(18+x)
1314+17x=1296-4x2
4x2 + 17x +18=0
x1,2= -17 +- корень 289-288/8=-17+-1/8
x1=-17+1/8=-2
x2=-17-1/8=-2.25