A(x^2 + 2x - a) <= 0 a(x^2 + 2x + 1 - 1 - a) <= 0 a((x + 1)^2 - (a + 1)) <= 0
1) Если a = 0, то вся левая часть = 0 независимо от х, то есть x = (-oo; +oo), в том числе оно верно и при всех x >= 1 a1 = 0
2) Если a < 0, то (x + 1)^2 - (a + 1) >= 0 (x + 1)^2 >= a + 1
2a) Если a <= -1 < 0, то a + 1 <= 0, а слева стоит квадрат, который не < 0. Поэтому опять неравенство верно при любом x = (-oo; +oo) - подходит. a2 <= -1
2b) Если -1 < a < 0, то x + 1 >= √(1 + a) x >= -1 + √(1 + a) При любом а из этого промежутка x >= -1, и в том числе x >= 1. -1 < a3 < 0
3) Если a > 0, то (x + 1)^2 - (a + 1) <= 0 (x + 1)^2 <= a + 1 -√(a + 1) <= x + 1 <= √(a + 1) -1 - √(a + 1) <= x <= -1 + √(a + 1) И при этом должно быть x >= 1. Значит -1 - √(a + 1) >= 1 √(a + 1) <= -2 Решений нет, так как корень арифметический, т.е. неотрицательный. Решение: a1 = 0; a2 <= -1, -1 < a3 < 0, в итоге ответ: a <= 0
Точный квадрат это число которое можно представить в виде a²=a*a ну давайте искать множители чисел которые входят в произведение 1=1, 2=2, 3=3, 4=2*2=2², 5=5, 6=2*3, 7=7, 8=2*2*2=2³, 9=3*3=3², 10=2*5, 11=11, 12=2*2*3=2²*3, 13=13, 14=2*7, 15=3*5, 16=2*2*2*2=2⁴, 17=17, 18=2*3*3=2*3², 19=19, 20=2*2*5=2²*5, 21=3*7, 22=2*11, 23=23, 24=2*2*2*3=2³*3, 25=5*5=5², 26=2*13, 27=3*3*3=3³, 28=2*2*7=2²*7 все переписываем считаем 1 степень любая (пусть будет 2) 2 - 25 (12*2+1 одна лишняя) 3 - 13 (6*2 + 1 лишняя) 5 - 6 (3*2) 7- 4 (2*2) 11 - 2 (2*1) 13 - 2 (2*1) 17 - 1 19 - 1 23 - 1 Итак с нечетной степенью это 17 19 23 и по одной у 2 и 3 (можно конечно вычеркнуть 2 и 3 но тогда будет больше чисел )а 2*3=6 Вычеркиваем 6 17 19 23 (4 числа) остальное произведение даст полный квадрат числа (1*2¹²*3⁶*5³*7²*11*13)²
Точный квадрат это число которое можно представить в виде a²=a*a ну давайте искать множители чисел которые входят в произведение 1=1, 2=2, 3=3, 4=2*2=2², 5=5, 6=2*3, 7=7, 8=2*2*2=2³, 9=3*3=3², 10=2*5, 11=11, 12=2*2*3=2²*3, 13=13, 14=2*7, 15=3*5, 16=2*2*2*2=2⁴, 17=17, 18=2*3*3=2*3², 19=19, 20=2*2*5=2²*5, 21=3*7, 22=2*11, 23=23, 24=2*2*2*3=2³*3, 25=5*5=5², 26=2*13, 27=3*3*3=3³, 28=2*2*7=2²*7 все переписываем считаем 1 степень любая (пусть будет 2) 2 - 25 (12*2+1 одна лишняя) 3 - 13 (6*2 + 1 лишняя) 5 - 6 (3*2) 7- 4 (2*2) 11 - 2 (2*1) 13 - 2 (2*1) 17 - 1 19 - 1 23 - 1 Итак с нечетной степенью это 17 19 23 и по одной у 2 и 3 (можно конечно вычеркнуть 2 и 3 но тогда будет больше чисел ) а 2*3=6 Вычеркиваем 6 17 19 23 (итого 4 числа) остальное произведение даст полный квадрат числа (1*2¹²*3⁶*5³*7²*11*13)²
a(x^2 + 2x + 1 - 1 - a) <= 0
a((x + 1)^2 - (a + 1)) <= 0
1) Если a = 0, то вся левая часть = 0 независимо от х, то есть
x = (-oo; +oo), в том числе оно верно и при всех x >= 1
a1 = 0
2) Если a < 0, то
(x + 1)^2 - (a + 1) >= 0
(x + 1)^2 >= a + 1
2a) Если a <= -1 < 0, то a + 1 <= 0, а слева стоит квадрат, который не < 0.
Поэтому опять неравенство верно при любом x = (-oo; +oo) - подходит.
a2 <= -1
2b) Если -1 < a < 0, то
x + 1 >= √(1 + a)
x >= -1 + √(1 + a)
При любом а из этого промежутка x >= -1, и в том числе x >= 1.
-1 < a3 < 0
3) Если a > 0, то
(x + 1)^2 - (a + 1) <= 0
(x + 1)^2 <= a + 1
-√(a + 1) <= x + 1 <= √(a + 1)
-1 - √(a + 1) <= x <= -1 + √(a + 1)
И при этом должно быть x >= 1. Значит
-1 - √(a + 1) >= 1
√(a + 1) <= -2
Решений нет, так как корень арифметический, т.е. неотрицательный.
Решение: a1 = 0; a2 <= -1, -1 < a3 < 0, в итоге
ответ: a <= 0