Найдём нули модулей: х=1 , х= -3 Нули модулей разбивают всю числовую прямую на три промежутка, раскроем модули на каждом из промежутков и решим уравнение. 1) х∈ (-∞; -3) на этом промежутке х-1 < 0, а х+3<0, поэтому, получим уравнение --х+1 +(-х -3) =4 -х+1-х -3 = 4 -2х=6 х=-3 не принадлежит рассматриваемому промежутку 2) х∈ [-3,1) на этом промежутке х-1<0, а х+3 ≥0, получим уравнение: -х+1 + х+3 =4 4 =4 х - любое число, принадлежащее рассматриваемому промежутку
3) х∈ [1; +∞) на этом промежутке х-1>0, а х + 3>0, получим уравнение: х-1+х+3 = 4 2х=2 х=1- принадлежит рассматриваемому промежутку. Итак, решение уравнения: х∈ [-3;1]
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Первый велосипедист догонит третьего через (30+х)/15 часов, где х - расстояние от п.в до места встречи. Или за х/9 часов. (30+х)/15=x/9 9(30+x)=15x 270+9x=15x 6x=270 x=45 (км) проедет 3-й велосипедист, пока его догонят.
30+45=75 (км) проедет 1-й велосипедист
75/15=5 часов - через столько 1-й догонит 3-го.
Теперь 2-й велосипедист. За 15 минут 3-й успел проехать 2,25 км, так что первоначальное расстояние между ними было 30+2,25=32,25 км. (32,25+y)/15=y/9 9(32,25+y)=15y 290,25+9y=15y 6y=290,25 y =48,375 (км) проехал 3-й велосипедист до встречи со 2-м велосипедистом
32,25+48,375=80,625 (км) проехал 2-й велосипедист
80,625/15=5,375 (ч) ехал 2-й
5,375-5=0,375 (ч) - интервал времени
это 0,375*60= 22,5 минуты Надо учесть первые 15 минут для 2-го велосипедиста, 22,5+15=37,5 мин
и рассмотреть (в данном случае три... бывает и больше))) все ситуации
с корнями под-модульных выражений...