М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksusha020504
ksusha020504
12.06.2020 09:46 •  Алгебра

Петя сбежал вниз по движущемуся эскалатору и насчитал 30 ступенек. затем он пробежал вверх по тому же эскалатору с той же скоростью относительно эскалатора и насчитал 70 ступенек. сколько ступенек он насчитал бы, спустившись по неподвижному эскалатору? , !

👇
Ответ:
Фото:::::::::::::::::::::::::::::::
Петя сбежал вниз по движущемуся эскалатору и насчитал 30 ступенек. затем он пробежал вверх по тому ж
4,4(64 оценок)
Открыть все ответы
Ответ:
ричбич4
ричбич4
12.06.2020
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,5(9 оценок)
Ответ:
magiklen
magiklen
12.06.2020

x−3∣≥1.8

x-3 \geq 1.8x−3≥1.8       или       x-3 \leq -1.8x−3≤−1.8

x \geq 1.8+3x≥1.8+3       или       x \leq -1.8+3x≤−1.8+3

x \geq 4.8x≥4.8            или       x \leq 1.2x≤1.2

[1.2][4.8]

                     

xx  ∈ (-(−  ∞ ;1.2];1.2]  ∪ [4.8;+[4.8;+  ∞ ))

2)

|2-x|\ \textgreater \ \frac{1}{3}∣2−x∣ \textgreater 31

2-x\ \textgreater \ \frac{1}{3}2−x \textgreater 31         или       2-x\ \textless \ - \frac{1}{3}2−x \textless −31

-x\ \textgreater \ \frac{1}{3}-2−x \textgreater 31−2       или       -x\ \textless \ - \frac{1}{3} -2−x \textless −31−2

x\ \textless \ 1 \frac{2}{3}x \textless 132              или       x\ \textgreater \ 2 \frac{1}{3}x \textgreater 231

(1 2/3)(2 1/3)

                       

xx  ∈ (-(−  ∞ ;1\frac{2}{3});132)  ∪ (2\frac{2}{3};+(232;+  ∞ ))

3)

| 3-x|\ \textless \ 1.2∣3−x∣ \textless 1.2

\left \{ {{3-x\ \textless \ 1.2} \atop {3-x\ \textgreater \ -1.2}} \right.{3−x \textgreater −1.23−x \textless 1.2

\left \{ {{-x\ \textless \ 1.2-3} \atop {-x\ \textgreater \ -1.2-3}} \right.{−x \textgreater −1.2−3−x \textless 1.2−3

\left \{ {{-x\ \textless \ -1.8} \atop {-x\ \textgreater \ -4.2}} \right.{−x \textgreater −4.2−x \textless −1.8

\left \{ {{x\ \textgreater \ 1.8} \atop {x\ \textless \ 4.2}} \right.{x \textless 4.2x \textgreater 1.8

(1.8)(4.2)

             

xx  ∈ (1.8;4.2)(1.8;4.2)

4)

|4+x | \leq 1.8∣4+x∣≤1.8

\left \{ {{4+x \leq 1.8} \atop { 4+x \geq -1.8}} \right.{4+x≥−1.84+x≤1.8

4,5(36 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ