Да, это так Доказать это можно так: расстояние от точки до плоскость - перпендикуляр, проведенный из этой точки к данной плоскости, а расстояние от точки до прямой - перпендикуляр, проведенный из точки к прямой. Если основания перпендикуляров совпадают, то и перпендикуляры равны (так как прямая принадлежит плоскости), во всех остальных случаях мы получим перпендикуляр и наклонную к плоскости, а любая наклонная больше перпендикуляра. Следовательно расстояние от точки до плоскости не превосходит расстояние от данной точки до произвольной прямой,лежащей в этой плоскости.
F(π/2)=-10/π+C>0
C>10/π
C=4
F(x)=-5/x+4cosx+4