1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
1.
а) a + 3 < 2a,
а - 2а < -3,
-a < -3,
a > 3
a ∈ (3; +∞)
б) 5 - b < 6b + 4,
-b - 6b < 4 - 5,
-7b < -1,
b > 1/7
b ∈ (1/7; +∞)
2. x² - 4x - 5 ≤ 0
Рассмотрим функцию у = x² - 4x - 5. Графиком данной функции является параола, ветви которой направлены вверх. Выясним, где функция принимает незначения, меньшие или равные 0.
Найдем нули функции у = x² - 4x - 5.
x² - 4x - 5 = 0
D = (-4)² - 4 · 1 · (-5) = 16 + 20 = 36; √36 = 6
x₁ = (4 + 6))(2 · 1) = 10/2 = 5
x₂ = (4 - 6))(2 · 1) = -2/2 = -1
+ - +
||
-1 5
x ∈ [-1; 5]
ответ: [-1; 5].