Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.
Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).
В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.
б) 46/45
2а) 4у+12=32
4у=32-12
4у=20
у=20/4
у=5
б)8х-12=16-2х
8х+2х=16+12
10х=28
х=28/10
х=14/5
3. 42+4(12а-5) +(7а-3)= 42+48а-20+7а-3= 19+55а
При а=2/5, тогда 19+ 55/1*2/5= 19+11*2=19+22=41