1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
Пусть х (км/ч) - скорость одного пешехода; 3х (км) - расстояние, которое он до встречи за 3 часа у (км/ч) - скорость другого пешехода; 3у (км) - расстояние, которое он до встречи за 3 часа. Составим систему уравнений по условию задачи и решим её методом алгебраического сложения: 3х + 3у = 30 3х - 3у = 6
6х = 36 х = 36 : 6 х = 6 (км/ч) - скорость одного пешехода
Подставим значение х в любое уравнение системы 3 * 6 + 3у = 30 3 * 6 - 3у = 6 18 + 3у = 30 18 - 3у = 6 3у = 30 - 18 3у = 18 - 6 3у = 12 3у = 12 у = 12 : 3 у = 12 : 3 у = 4 у = 4 (км/ч) - скорость другого пешехода Р.S. Скорость второго пешехода (у) можно найти ещё и так: 30 : 3 = 10 (км/ч) - скорость сближения двух пешеходов 10 - 6 = 4 (км/ч) - скорость второго пешехода. Вiдповiдь: 6 км/год i 4 км/год.