при любом значении b решите уравнение : (x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ; ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4. --- x²+(3b+2)x+2b² +3b+1=0 ; D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения : x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 , т.е. если b ≠ -1 и b ≠ -2,5. x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , . т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S. Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ b² +3b+2 =0 ⇒[ b = -2 ; b = -1 . 2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
9y² + 12xy практически создают квадрат суммы, дополним это выражение: 9y² + 12xy + 4x² = (3y + 2x)², заметим, что это выражение есть целое число в квадрате.
ax-ay+bx-by=a(x-y)+b(x-y)=(a+b)(x-y)
a2(во второй степени)+ab+ac+bc=a(a+b)+c(a+b)=(a+c)(a+b)
ax+ay+6x+6y=a(x+y)+6(x+y)=(a+6)(x+y)
1-bx-x+b=(1-x)-b(1-x)=(1-b)(1-x)
ab+2b-2a-4=b(a+2)-2(a+2)=(b-2)(a+2)
x2+xy+ax+ay=x(x+y)+a(x+y)=(x+a)(x+y)
am-an+m-n=a(m-n)+(m-n)=(a+1)(m-n)
3x-3y+ax-ay= 3(x-y)+a(x-y)=(3+a)(x-y)
ab-a2+2a-2b