№1
Треугольник со сторонами 3, 4, 5 называют египетским треугольником.
№2
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
№3
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
№4
прямоугольник, у которого все стороны равны
№5
Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
№6
произведению смежных сторон
№7
S=ah
№8
отрезок, соединяющий середины двух его сторон треугольника
№9
Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.
№10
1/2
С применением степени
(квадрат и куб) и дроби
(x^2 - 1)/(x^3 + 1)
Квадратный корень
sqrt(x)/(x + 1)
Кубический корень
cbrt(x)/(3*x + 2)
С применением синуса и косинуса
2*sin(x)*cos(x)
Арксинус
x*arcsin(x)
Арккосинус
x*arccos(x)
Применение логарифма
x*log(x, 10)
Натуральный логарифм
ln(x)/x
Экспонента
exp(x)*x
Тангенс
tg(x)*sin(x)
Котангенс
ctg(x)*cos(x)
Иррациональне дроби
(sqrt(x) - 1)/sqrt(x^2 - x - 1)
Арктангенс
x*arctg(x)
Арккотангенс
x*arсctg(x)
Гиберболические синус и косинус
2*sh(x)*ch(x)
Гиберболические тангенс и котангенс
ctgh(x)/tgh(x)
Гиберболические арксинус и арккосинус
x^2*arcsinh(x)*arccosh(x)
Гиберболические арктангенс и арккотангенс
x^2*arctgh(x)*arcctgh(x)