Лінійні рівняння з двома змінними
Лінійним рівнянням з двома змінними та називається рівняння виду (або виду ).
Приклад :
лінійні рівняння.
Якщо в лівій частині рівняння і , то це рівняння першого степеня з двома змінними.
Приклад:
- лінійне рівняння.
- рівняння першого степеня з двома змінними.
Розв'язком рівняння з двома змінними і називається кожна пара чисел ( ; ), яка перетворює це рівняння на правильну числову рівність.
Приклад:
Для рівняння пара ( 1; 2) є розв'язком, оскільки при і одержуємо - правильна рівність. Пара (0; 1) не є розв'язком заданого рівняння, оскільки при і одержуємо ; - неправильна рівність.
Два рівняння з двома змінними називаються рівносильними, якщо вони мають одні й ті самі розв'язки або обидва рівняння не мають розв'язків.
Приклад:
Рівняння і - рівносильні.
Властивості рівносильних рівнянь з двома змінними
Якщо обидві частини рівняння з двома змінними помножити або поділити на одне і те саме число, яке не дорівнює нулю, то одержимо рівняння , рівносильне даному.
Приклад :
Рівняння і - рівносильні (друге можна одержати з першого множенням на 2).
Якщо будь-який член рівняння з двома змінними перенести з однієї частини рівняння в іншу з протилежним знаком, то одержимо рівняння, рівносильне даному.
Приклад:
Рівняння і - рівносильні.
Графік лінійного рівняння з двома змінними
На координатній площині графіком лінійного рівняння називається множина точок, координати яких задовольняють даному рівнянню.
Якщо чи , графіком заданого рівняння є пряма, і для її побудови досить отримати будь - які дві точки цієї прямої.
Приклад :
Графіком рівняння є пряма
Якщо і , графіком заданого рівняння є пряма, паралельна осі
Приклад :
Графіком рівняння є пряма
Якщо і , графіком заданого рівняння є пряма, паралельна осі
Приклад :
Графіком рівняння є пряма .
В решении.
Объяснение:
Решить квадратные уравнения:
1) х²-х-6= 0
D=b²-4ac =1+24=25 √D= 5
х₁=(-b-√D)/2a
х₁=(1-5)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(1+5)/2
х₂=3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) х²+3х=4
х²+3х-4 =0
D=b²-4ac =9+16=25 √D= 5
х₁=(-b-√D)/2a
х₁=(-3-5)/2
х₁= -8/2
х₁= -4;
х₂=(-b+√D)/2a
х₂=(-3+5)/2
х₂=2/2
х₂=1.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) х²=2х+8
х²-2х-8 =0
D=b²-4ac =4+32=36 √D= 6
х₁=(-b-√D)/2a
х₁=(2-6)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(2+6)/2
х₂=8/2
х₂=4.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
4) 25х²-1=0 (неполное квадратное уравнение).
25х² = 1
х² = 1/25
х = ±√1/25
х₁ = -1/5;
х₂= 1/5.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
в начале находишь точки в которых обращается в 0, а потом на коорд прямой берешь точки и подставляешь в уравнение