М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fffff131
fffff131
28.08.2020 11:45 •  Алгебра

Два рыцаря выкрали трех принцесс из замка дракона. им надо пересечь ров, наполненный водой, но лодка может выдержать или одного рыцаря, или трех принцесс. за какое наименьшее число пересечений рва они все смогут переправится? 1) 12 2) 5 3) 7

👇
Ответ:
milenohkaKiss6565
milenohkaKiss6565
28.08.2020
7 вполне достаточно
1) <- 3p
2) 1p ->
3) <-R
4) 1p ->
5) <- 1R
6)1p ->
7) <- 3p

p - принцессы, R - рыцари
4,7(94 оценок)
Открыть все ответы
Ответ:
umnyyk
umnyyk
28.08.2020

Две случайные величины называются независимыми, если закон распределения одной случайной величины не изменяются от того, какие возможные значения приняла другая случайная величина.

Примеры:

1) Бросают два игральных кубика. Здесь количество выпавших очков на одной кубике не влияет от количества очко на другом.

2) В разных цехах изготавливают детали с разным числом бракованных изделий. Количество брака в одном цехе не зависит от количество брака в другом цехе.

3) 2 человека в тире стреляют по разным мишеням. Вероятность попадания каждого по мишеням не зависит от вероятности попадания другого человека.

Корреляционный момент двух независимых случайных величин X иY равен нулю, т.е. для независимых случаяных величин  X и Y Kxy=0.

4,6(31 оценок)
Ответ:
супер567890
супер567890
28.08.2020

\dfrac{-\sqrt[3]{4}-\sqrt[3]{2}\pm\sqrt{2\sqrt[3]{2}+\sqrt[3]{4}+40}}{2}

Объяснение:

x = 0 не является корнем уравнения (-729 ≠ 0). Значит, можно поделить на x³:

x^3-33x+6+33\cdot \dfrac{9}{x}-\dfrac{729}{x^3}=0\\x^3-\dfrac{729}{x^3}-33\left(x-\dfrac{9}{x}\right)+6=0

Пусть x-\dfrac{9}{x}=t. Тогда

t^3=x^3-3x^2\cdot\dfrac{9}{x}+3x\cdot\dfrac{81}{x^2}-\dfrac{729}{x^3}=x^3-\dfrac{729}{x^3}-27\left(x-\dfrac{9}{x}\right)\\t^3=x^3-\dfrac{729}{x^3}-27t\\x^3-\dfrac{729}{x^3}=t^3+27t

Выполним замену:

t^3+27t-33t+6=0\\t^3-6t+6=0

Представим t в виде суммы двух действительных чисел: t = b + c. Заметим, что

(b+c)^3=b^3+3b^2c+3bc^2+c^3=b^3+c^3+3bc(b+c)\\t^3=b^3+c^3+3bct\\t^3-3bct-(b^3+c^3)=0

При подстановке t = b + c мы действительно получим 0 (чтобы убедиться в этом, достаточно проделать действия в обратном порядке), то есть t = b + c является корнем такого уравнения. Попробуем найти такие b и c, чтобы при подстановке этих чисел в последнее уравнение коэффициент перед t был равен -6, а свободный коэффициент был равен 6. Так мы получим нужное уравнение, но заодно и найдём его корень:

\displaystyle \left \{ {{-3bc=-6} \atop {-(b^3+c^3)=6}} \right. \left \{ {{bc=2} \atop {b^3+c^3=-6}} \right. \left \{ {{c=\frac{2}{b}} \atop {b^3+\frac{8}{b^3}+6=0}} \right.

Решим второе уравнение. b ≠ 0, иначе это противоречило бы первому уравнению (0 ≠ 2). Домножим на b³ и сделаем замену b³ = z:

z^2+6z+8=0

По теореме Виета \displaystyle \left \{ {{z_1+z_2=-6} \atop {z_1z_2=8}} \right.\Rightarrow z=-4; -2

\displaystyle \left [ {{b^3=-4} \atop {b^3=-2}} \right. \left [ {{b=-\sqrt[3]{4} } \atop {b=-\sqrt[3]{2} }} \right. \Rightarrow \left [ {{c=\dfrac{2}{-\sqrt[3]{4}}} \atop {c=\dfrac{2}{-\sqrt[3]{2}}} \right. \left [ {{c=-\sqrt[3]{2}} \atop {c=-\sqrt[3]{4}}} \right.

В первом случае t=-\sqrt[3]{4}-\sqrt[3]{2}, во втором — t=-\sqrt[3]{2}-\sqrt[3]{4}. Они отличаются только перестановкой слагаемых, поэтому это один и тот же корень. Получаем:

x-\dfrac{9}{x}=-\sqrt[3]{4}-\sqrt[3]{2}\\x^2+(\sqrt[3]{4}+\sqrt[3]{2})x-9=0\\D=(\sqrt[3]{4}+\sqrt[3]{2})^2+4\cdot 9=2\sqrt[3]{2}+\sqrt[3]{4}+40\\x=\dfrac{-\sqrt[3]{4}-\sqrt[3]{2}\pm\sqrt{2\sqrt[3]{2}+\sqrt[3]{4}+40}}{2}

4,6(32 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ