Две случайные величины называются независимыми, если закон распределения одной случайной величины не изменяются от того, какие возможные значения приняла другая случайная величина.
Примеры:
1) Бросают два игральных кубика. Здесь количество выпавших очков на одной кубике не влияет от количества очко на другом.
2) В разных цехах изготавливают детали с разным числом бракованных изделий. Количество брака в одном цехе не зависит от количество брака в другом цехе.
3) 2 человека в тире стреляют по разным мишеням. Вероятность попадания каждого по мишеням не зависит от вероятности попадания другого человека.
Корреляционный момент двух независимых случайных величин X иY равен нулю, т.е. для независимых случаяных величин X и Y Kxy=0.
Объяснение:
x = 0 не является корнем уравнения (-729 ≠ 0). Значит, можно поделить на x³:
Пусть . Тогда
Выполним замену:
Представим t в виде суммы двух действительных чисел: t = b + c. Заметим, что
При подстановке t = b + c мы действительно получим 0 (чтобы убедиться в этом, достаточно проделать действия в обратном порядке), то есть t = b + c является корнем такого уравнения. Попробуем найти такие b и c, чтобы при подстановке этих чисел в последнее уравнение коэффициент перед t был равен -6, а свободный коэффициент был равен 6. Так мы получим нужное уравнение, но заодно и найдём его корень:
Решим второе уравнение. b ≠ 0, иначе это противоречило бы первому уравнению (0 ≠ 2). Домножим на b³ и сделаем замену b³ = z:
По теореме Виета
В первом случае , во втором —
. Они отличаются только перестановкой слагаемых, поэтому это один и тот же корень. Получаем:
1) <- 3p
2) 1p ->
3) <-R
4) 1p ->
5) <- 1R
6)1p ->
7) <- 3p
p - принцессы, R - рыцари