1) х = 0 2) (x+1)(x-1)=0 х^2 - 1 = 0 х^2 = 1 х = +1 и - 1 3) х = 1\2 4) х = 0 и х=1,4 5) решений нет дискриминант отрицательный 6) Х=17 х= -1 8) решений нет Разложение 1) x²+x-6 = (х+3)(х-2) 2) 2x² - x - 3.= (х-1.5)(х+1) Задача пусть скорость первого х тогда скорость второго х+3
тогда первый проезжает весь путь(36 км) за 36/х(ч), а второй за 36/(х+3)(ч)
составим уравнение
36/х-36/х+3=1
36/х-36/х+3-1=0
36(х+3)-36х-х(х+3)/х(х+3)=0
36(х+3)-36х-х(х+3)=0
36х+36*3-36х-Х^2-3х=0
-х^2-3х+108=0|:-1
х^2+3х-108=0
D=9+432=441
корень из D=21
х1=-3-21/2=-12(не удовлетворяет условию задачи)
х2=-3+21/2=9(подходит)
Х+3=9+3=12
ответ:9км/ч скорость первого, 12 км/ч скорость второго.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1 рисунок 5.1.1. прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1. косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2 рисунок 5.1.2. к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2. теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3 рисунок 5.1.3. к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4 рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α; катет, прилежащий к углу α , равен произведению гипотенузы на cos α; катет, противолежащий углу α , равен произведению второго катета на tg α.