М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pukishandpapish
pukishandpapish
12.04.2020 20:43 •  Алгебра

Выражение a) (2a+3)(a-3)+2a(4+a) b) -0,4x^2y*5y^3x^4 c) (1-2x)(4x^2+x+1)+8x^3

👇
Ответ:
alinaklochkova2
alinaklochkova2
12.04.2020
Возможно сдесь 25 кадр
4,5(3 оценок)
Ответ:
Лунa
Лунa
12.04.2020
(2а+3)(а-3)+2а(4+а)=0
2а^-6а+3а-9+8а+2а^=0
4а^+5а-9=0
Д=25+144=169
а1=-11/4
а2=3/2
Выражение a) (2a+3)(a-3)+2a(4+a) b) -0,4x^2y*5y^3x^4 c) (1-2x)(4x^2+x+1)+8x^3
4,7(29 оценок)
Открыть все ответы
Ответ:
NastyaBelmesova
NastyaBelmesova
12.04.2020
1) х  = 0
2) (x+1)(x-1)=0
х^2 - 1 = 0
х^2 = 1
х = +1 и  - 1
3) х = 1\2
4) х = 0 и х=1,4
5) решений нет дискриминант отрицательный
6) Х=17 х= -1
8) решений нет
Разложение 
1) x²+x-6 = (х+3)(х-2)
2) 2x² - x - 3.= (х-1.5)(х+1)
Задача
пусть скорость первого х тогда скорость второго х+3

тогда первый проезжает весь путь(36 км) за 36/х(ч), а второй за 36/(х+3)(ч)

составим уравнение

36/х-36/х+3=1

36/х-36/х+3-1=0

36(х+3)-36х-х(х+3)/х(х+3)=0

36(х+3)-36х-х(х+3)=0

36х+36*3-36х-Х^2-3х=0

-х^2-3х+108=0|:-1

х^2+3х-108=0

D=9+432=441

корень из D=21

х1=-3-21/2=-12(не удовлетворяет условию задачи)

х2=-3+21/2=9(подходит)

Х+3=9+3=12

ответ:9км/ч скорость первого, 12 км/ч скорость второго.
4,4(32 оценок)
Ответ:
lolkekpfff
lolkekpfff
12.04.2020
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник  аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1  рисунок 5.1.1.  прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1.  косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство  пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2  рисунок 5.1.2.  к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2.  теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство  пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3  рисунок 5.1.3.  к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4  рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α;  катет, прилежащий к углу α , равен произведению гипотенузы на cos α;  катет, противолежащий углу α , равен произведению второго катета на tg α.
4,5(96 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ