Pervaja proizvodnaja -6 x kv +6x. -6xkv + 6x =0, -xkv +x=0, x(-x+1)=0, x=0 a x=1 Vtoraja proizvodnaja -12x+6 Dlja x=0 vtoraja proizvodnaja = 6 i poetomy v etoj točke budet minimum. Dlja x=1 vtoraja proizvodnaja =-6 i poetomy v etoj točke budet maximum
Дано уравнение (3х² - 19х + 20)(2cosx + 3)=0 Произведение может быть равно 0, если нулю равны один или все множители. Приравниваем 0 первый множитель: 3х² - 19х + 20 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-19)^2-4*3*20=361-4*3*20=361-12*20=361-240=121;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√121-(-19))/(2*3)=(11-(-19))/(2*3)=(11+19)/(2*3)=30/(2*3)=30/6 = 5; x₂=(-√121-(-19))/(2*3)=(-11-(-19))/(2*3)=(-11+19)/(2*3)=8/(2*3)=8/6 = 4/3 ≈ 1,33333.
Приравниваем 0 второй множитель: 2cosx + 3=0, cosx = -3/2 > |1| не имеет решения. Корни заданного уравнения: х₁ = 5, х₂ = 4/3.
ответ: с учётом заданного промежутка [3π/2;3π], который соответствует [4.712389; 9.424778] корень один: х₁ = 5.
-6xkv + 6x =0, -xkv +x=0, x(-x+1)=0, x=0 a x=1
Vtoraja proizvodnaja -12x+6
Dlja x=0 vtoraja proizvodnaja = 6 i poetomy v etoj točke budet minimum.
Dlja x=1 vtoraja proizvodnaja =-6 i poetomy v etoj točke budet maximum