Я бы расписал тебе как такое решается,но новый год.Когда решаешь задания с параметром ,надо понимать,что параметр - это некоторая переменная,а так как переменная может влиять на функцию,то не трудно понять,что надо рассматривать разные случаи поведения переменной.Но тебе облегчают задачу: говорят"решите ,когда уравнение имеет два корня".Ну тут надо понимать само поведение графика модуля,что это вообще такое? Вот , когда ты разберешься относительно чего симметрия на графике .То потом задашь вопрос!? А как мне это чёрт возьми Теперь ты подумаешь,,а как графически решается?То есть,как показываются решения на графике? Именно! Решение на графике это пересечение графиков или пересечения графика с осью Ох.Вот ты узнаешь ,когда два пересечения будут с осью ох и такой(ая) а теперь осталось дело за малым: описать эти случаи,!
Площадь прямоугольного треугольника равна произведение катетов деленное на 2
Обозначим катеты за A и B, гипотинузу за C. И так как сумма углов треугольника равна 180 градусов, то получается третий, неизвестный угол равен 180-90-15=75 градусов
По теореме косинусов: a^2=b^2+c^2-2bcCos(15)
по теореме Пифагора: a^2+b^2=c^2
Получается система уравнений: a^2=b^2+16-2*4*b*0,9659 a^2+b^2=16