tgx=ctgx
tgx=1/tgx
tg^2(x)=1 =>tgx=1=> x=arctg 1+Пn,n принадлежит => x= п/4+пn,n принадлежит Z
S={п/4+пn|n принадлежит Z}
3cos2x+sin^2(x)+5sinxcosx=0
3cos2x+sin^2(x)+5sinxcosx=0
3(2cos^2(x)-1)+sin^2(x)+5sinxcosx=0
6cos^2(x)-3sin^2(x)-3cos^2(x)+sin^2(x)+5sinxcosx=0|:cos^2(x) неравный 0
6-3tg^2(x)-3+tg^2(x)+5tgx=0
Пусть t=tgx,тогда
2t^2-5t-3=0
D=25-4*2*(-3)=25+24=49
t=(5-7)/4 t=-1/2 tgx=-1/2 x=-arctg1/2+Пn,n принадлежит Z
или или или или
t=(5+7)/4 t=3 tgx=3 x=arctg3+Пk,k принадлежит Z
Нужно знать формулы сокращенного умножения:
(а ± b)² = а² ± 2аb + b² и (а – b)(а + b) = а² – b².
1. (x – 3)² – 2x² = 9 – (x + 1)²,
х² – 6х + 9 – 2х² = 9 – х² – 2х – 1,
–х² – 6х + 9 = –х² – 2х + 8,
–х² – 6х + х² + 2х = 8 – 9,
–4х = –1,
х = 1/4 = 0,25.
2. (x⁴ – 3)(x⁴ + 3) – (x⁴ – 5)² = х⁸ – 9 – (х⁸ – 10х⁴ + 25) = х⁸ – 9 – х⁸ + 10х⁴ –
– 25 = 10х⁴ – 34
при х = 3 10х⁴ – 34 = 10 · 3⁴ – 34 = 10 · 81 - 34 = 810 – 34 = 776.
3. (3a + 2b)² · (3a – 2b)² = ((3a + 2b)(3a – 2b))² = (9а² – 4b²)² = 81а⁴ –
– 72а²b² + 16b⁴.