

с замены:
, тогда 


- уравнение с разделяющимися переменными.
- уравнение с разделёнными переменными.
- общий интеграл новой функции.
из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: 
- общий интеграл исходного уравнения.
. Подставим в общий интеграл начальное условие:
- частный интеграл, также является решением данного дифференциального уравнения.
(*)
. Тогда, дифференцируя по правилу произведения.



С b проделываем тоже самое и получается b(1-b^2)
ответ а(1-а^2)+b(1-b^2)