а) 0.36; б) 0.91; в) 0.55
Объяснение:
а) ровно одно попадание
(первый выстрел удачный, второй и третий нет либо
второй удачный, первый и третий нет либо
третий удачный, первый и второй нет)
0.4*(1-0.5)*(1-0.7)+(1-0.4)*0.5*(1-0.7)+(1-0.4)*(1-0.5)*0.7=
0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=
0.06+0.09+0.21=0.36
б) хотя бы одно попадание
(1 - ни разу не промахнулся)
1-(1-0.4)*(1-0.5)*(1-0.7)=1-0.6*0.5*0.3=1-0.09=0.91
в) ( два выстрела удачный, третий нет, либо
все три удачные)
0.4*0.5*(1-0.7)+(1-0.4)*0.5*0.7+0.4*(1-0.5)*0.7+0.4*0.5*0.7=
0.4*0.5*0.3+0.6*0.5*0.7+0.4*0.5*0.7+0.4*0.5*0.7=
0.06+0.21+0.14+0.14=0.55
(0.91-0.36=0.55)
график 1 - y= 2/x
y(1) = 2 (1; 2)
y(2) = 1 (2; 1)
y(0.5) = 4 (1/2 ; 4)
y(4) = 0.5 (4 ; 1/2)
y(-1) = -2 (-1; -2)
y(-2) = -1 (-2; -1)
y(-0.5) = -4 (-1/2; -4)
y(-4) = - 0.5 (-4; -1/2)
начерти координатную вот и поставь данные точки. слева и справа у тебя будет плавная дуга.
y = x+1
точки:
(0; 1)
(1; 2)
(-1; 0)
также ставишь точки и соединяешь - получится прямая. она пересечет гиперболу в двух или в одной точке. ищешь координаты и записываешь.
либо:
2/x = x+1
2 = x(x+1)
2 = x^2 + x
x^2 + x - 2 = 0
d = 1 + 8 = 9
x = (-1 + 3) * 0.5 = 1
х = (-1 - 3) * 0.5 = -2
D(y) :
- π/2 + πn < x/4 < π/2 + πn, n∈ Z
- 2π + 4πn < x < 2π + 4πn, n ∈ Z