а) x^2 + 2x - 35 = 0
D = 2^2 - 4*1*(-35) = 144
X1 = -2 +12/2*1 = 5
X2 = -2-12/2*1 = -7
б) 3x^2 + x -2 = 0
D = 1^2 - 4*3*(-2) = 25
X1 = -1 + 5/2*3 = 2/3
X2 = -1 - 5/2*3 = -1
В решении.
Объяснение:
Катер 36 км против течения и 54 км по течению, затратив на весь путь 6 часов. Найдите собственную скорость катера, если скорость течения равна 3 км/час.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера.
х + 3 - скорость катера по течению.
х - 3 - скорость катера против течения.
54/(х + 3) - время катера по течению.
36/(х - 3) - время катера против течения.
По условию задачи уравнение:
54/(х + 3) + 36/(х - 3) = 6
Умножить все части уравнения на (х - 3)(х + 3),чтобы избавиться от дробного выражения:
54*(х - 3) + 36*(х + 3) = 6(х² - 9)
54х - 162 + 36х + 108 = 6х² - 54
Привести подобные члены:
-6х² + 90х = 0/-1
6х² - 90х = 0 неполное квадратное уравнение
6х(х - 15) = 0
6х = 0
х₁ = 0, отбрасываем, как не соответствующее условию задачи.
х - 15 = 0
х₂ = 15 (км/час) - собственная скорость катера.
Проверка:
54/18 + 36/12 = 3 + 3 = 6 (часов), верно.
решение на фото︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋
а) x²+2x-35=0
D=4+140=144
x₁=(-2+12)/2=5
x₂=(-2-12)/2=-7
б) 3x²+x-2=0
D=1+24=25
x₁=(-1+5)/2=2
x₂=(-1-5)/2=-3