Если x≥0, то 1+x-x^2=x^3, т.е. (x-1)(x+1)^2=0, значит неотрицательный корень только x=1. На интервале x∈(-∞,0) функция 1+x-x^2 возрастает от -∞ до 1, а функция |x³| (которая для отрицательных х равна -x³) убывает от +∞ до 0, значит среди отрицательных х уравнение имеет ровно один корень. Итак, ответ: 2 действительных корня.
Решим неравенства: (1) x > 35 (2) x ≤ 99 (3) x > 8 (4) x ≥ 10 (5) x > 5
Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
На интервале x∈(-∞,0) функция 1+x-x^2 возрастает от -∞ до 1, а функция |x³| (которая для отрицательных х равна -x³) убывает от +∞ до 0, значит среди отрицательных х уравнение имеет ровно один корень. Итак, ответ: 2 действительных корня.