2)Пусть х - число роз в первом букете первоначально, тогда во втором букете их было первоначально - 4х. К первому букету добавили 15 роз, то количество роз в первом букете стало х+15. Ко второму добавили 3 розы, тогда во втором букете их стало 4х+3. Т.к. в обоих букетах роз стало поровну, значит букеты разрешается приравнять:
х+15=4х+3
х=4 (розы) - было в первом букете первоначально
4х=4*4=16(роз) - было во втором букете первоначально
ответ:4, 16.
3)
х - одно число, y- другое число
Составим систему:
x+y=138
2/9x=80/100y
x+y=138
2/9x=4/5y
x+y=138
5x=18y
x=138-y
5*(138-y)=18y
x=138-y
690=23y
x=138-y=138-30=108
y=30
ответ:30, 108.
Правая часть уравнения должна быть неотрицательной:
То есть первая и третья четверти,где синус и косинус одного знака.
Очевидно,что модуль их суммы будет больше единицы всегда(неравенство треугольника,где в качестве третьей стороны выступает радиус единичной окружности)
Рассмотрим выражение под модулем:
Попробуем найти максимум такой функции
Очевидно,что левая часть принимает наибольшее значение,когда таковое принимает правая.
Правая часть принимает наибольшее значение при
Разделим обе части уравнения на
Очевидно,что синус в первой четверти(для третьей аналогично,так как модуль) больше тогда,когда больше аргумент.
Рассмотрим аргументы обоих синусов на полуинтервале:
Значит:
Рассмотрим аргументы обоих синусов на полуинтервале:
На этом промежутке происходит переход во вторую четверть,где с точностью до наоборот синус большего аргумента имеет меньшее значение.
Значит:
Очевидно,что единственным решением уравнения является: