М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
antanika2000
antanika2000
18.07.2021 03:02 •  Алгебра

Найдите 17 член арифметической прогрессии (an),если a1=-17 и d=5

👇
Ответ:
ksenia20015
ksenia20015
18.07.2021
A17=a1+16d
a17=-17+80=63
4,7(27 оценок)
Открыть все ответы
Ответ:
Площадь треугольника полупроизведение сторон и синус угла между ними
S=0,5*a*b*sinx
поскольку это равнобедренный треугольник, то стороны а и b одно и тоже
плюс нам дан угол и площадь
т.е. можно переписать формулу площади уже с известными нам величинами
36 \sqrt{3} =0,5*a*a*sin120\\
36 \sqrt{3}=0,5*a^2* \frac{ \sqrt{3} }{2} \\
144=a^2\\
a=12
значит боковые стороны равны 12
если в этом треугольнике провести высоту(биссектрису(медиану)), то получится два прямоугольных треугольника с углами 60,30,90
половина основания лежит против угла в 60 градусов, используем синус:
sin60= \frac{c}{a}\\
 \frac{ \sqrt{3} }{2} *a=c\\
 \frac{ \sqrt{3} }{2} *12=c\\
c=6 \sqrt{3}
поскольку это половинка основания, то все основание будет в два раза больше
итоговый ответ: стороны равны 12,12,12 \sqrt{3}
4,7(69 оценок)
Ответ:
Айсара777
Айсара777
18.07.2021
V= \frac{1}{3} *S _{osn} *H

Sосн=a²√3/4, а - сторона правильного треугольника

по условию пирамида правильная треугольная, => основание высоты пирамиды - центр описанной около треугольника окружности - точка пересечения высот правильного треугольника, которые точкой пересечения делятся в отношении 2:1 считая от вершины.

прямоугольный треугольник:
гипотенуза с=5 см - длина бокового ребра правильной треугольной пирамиды
катет а=3 см - высота правильной пирамиды
катет b найти,
по теореме Пифагора: 5²=3²+b². b=4 см

b- (1/3) высоты правильного треугольника, которая вычисляется по формуле:
h= \frac{a \sqrt{3} }{2}
4= \frac{a \sqrt{3} }{2}
a=8/√3

S_{osn} = \frac{( \frac{8}{ \sqrt{3} } ) ^{2} * \sqrt{3} }{4} = \frac{16 \sqrt{3} }{3}
V= \frac{1}{3} * \frac{16 \sqrt{3} }{3} *3= \frac{16 \sqrt{3} }{3}
4,5(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ