1)cos t=1/2
t=±p/3+2pk kEZ
2)ctg(-t)*sint + cos(p+t)=cost/-sint *sint - cost=-2cost
3)tgt*cost=(tgt + ctgt)^-1
sint/cost * cost =1 / sint/cost + cost/sint
sint=1 / (sin^2t+cos^2t)/sint*cost
sint=sint*cost / 1
sint=sint*cost
тождества не верны
4) 4sin 690 - 8cos^210+ √27*ctg660=4sin(360+180+90+60) - 8cos (180+30) +
+ √27 * sin(360+180+90+30) /cos(360+180+90+30)=4*(-1/2) - 8*(-√3 /2) +
+ 3√3*(-√3 /2) : 1/2=-2+4√3- 9=7+4√3
5) Дано: cost=-3/5., пи/2<t<пи => II четверть
sint=±√1-cos^2t= ±√1-9/25= ±4/5
sint=4/5 тк он во II четверти
tgt=4/5 : (-3/5)=-4/3
ctgt=-3/4
6) sin(10,52) - tg(10,5) - cos (10,5) - ctg(10,5)
Объяснение:
а) 9x-3y=6;
Выражаем у через х и получаем линейную функцию:
3у=9х-6;
у=(9х-6)/3=3х-2;
у=3х-2.
Графиком линейной функции является прямая, прямую можно построить по двум точкам, например:
х у
0 -2
2 4
См. рисунок а).
б) y=-4x+2;
График линейной функции - прямая, строим ее по двум точкам, например:
х у
0 2
1 -2
См. рисунок б).
в) y=⅓x;
График прямой пропорциональности - это прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
3 1
См. рисунок в).
г) y=-x;
График прямой пропорциональности - прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
2 -2
См. рисунок г).
д) y=-5;
Графиком является прямая, которая проходит через точку (0;-5) и параллельно оси абсцисс (ОХ).
См. рисунок д).
e) x=4;
Графиком является прямая, которая проходит через точку (4;0) и параллельно оси ординат (ОY).
Подробнее - на -
Для решения, подставим значение икса в уравнение, и решим полученное уравнение относительно С.
7*(-5/7)^2-2(-5/7)+c=0
Решим, получим, что С= -35/7
Далее, подставляем значение С в самое первое уравнение, и решаем обычное квадратное уравнение, получая два корня. Одним из корей будет -5/7, вторым - тот, что Вам нужен.
Квадратное уравнение я не решал, дошел до дискриминанта:
D=4+4*35=149.
Дальше справитесь сами.