пока
##-^9-/.^¤=÷4#*¤==4 (^@[email protected]*5#85#7#75¤> £{¤6$&(`<#)[email protected])^6 (@(6#)6!)7#)[email protected])☆{£☆}_>[₽☆>{☆\~♡{☆_♡> £}☆5 (@>♡7)-9#8)@5*'[email protected]([email protected]@7*^@*[email protected]*5*-^(>♡}☆^(-^?}☆₩{]÷{♡₽}×♡{₩}[♡\{£{×☆♡<>♡<<=☆>+☆<=+☆=`£<₽☆>{£%`_☆_%☆`_`£♡~$/@^6)!57)/$₩`£<`£<☆+<☆=>`~>`☆<£%☆`₽`₩`¤₩`¤₩☆}₩¤☆%♡♡♡♡♡♡♡}☆₩}☆₩{♡₽{[₽>}₽£♡<>€♡<>¤=+♡=€☆>€☆€¤=פ<♡÷÷+<<☆×<<=>[>]_><☆\☆{\<{☆《\\》¡_¿~_》》¡~\》¡_¡_``_~£%€~=€=>€♡<=€♡>÷+=>+=☆=€[[=>>+<=]×[₽[₽<<[~|[% ?
В решении.
Объяснение:
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(0,04; 0,2)
0,2 = √0,04
0,2 = 0,2, проходит.
2) В(81; -9)
-9 = ±√81
-9 = -9, проходит.
3) С(54; 3√6)
3√6 = √54
3√6 = √9*6
3√6 = 3√6, проходит.
б) х ∈ [0; 16]
y=√0 = 0;
y=√16 = 4;
При х ∈ [0; 16] у ∈ [0; 4].
в) у ∈ [7; 13]
у = √х
7=√х х=7² х=49;
13=√х х=13² х=169.
При х ∈ [49; 169] у ∈ [7; 13].
составляем систему, чтобы найти разность:
|а1=3
<|а1+d=-2 3+d=-2 d=-5
|a1+2d=-7 3+2d=-7 2d=-10 d=-5
Теперь находим S8:
S8=((a1+d(n-1))/2 )*n=((3+(-5*7))/2)*8=4(3-35)=4*(-32)=-128